
7 Convolution and
Filtering

Lab Objective: The Fourier transform reveals information in the frequency domain about signals

and images that might not be apparent in the usual time (sound) or spatial (image) domain. In this

lab, we use the discrete Fourier transform to e�ciently convolve sound signals and �lter out some

types of unwanted noise from both sounds and images. This lab is a continuation of the Discrete

Fourier Transform lab and should be completed in the same Jupyter Notebook.

Convolution
Mixing two sounds signals�a common procedure in signal processing and analysis�is usually done

through a discrete convolution. Given two periodic sound sample vectors f and g of length n, the

discrete convolution of f and g is a vector of length n where the kth component is given by

(f ∗ g)k =

n−1∑
j=0

fk−jgj , k = 0, 1, 2, . . . , n− 1. (7.1)

Since audio needs to be sampled frequently to create smooth playback, a recording of a song can

contain tens of millions of samples; even a one-minute signal has 2, 646, 000 samples if it is recorded

at the standard rate of 44, 100 samples per second (44, 100 Hz). The naïve method of using the sum

in (7.1) n times is O(n2), which is often too computationally expensive for convolutions of this size.

Fortunately, the discrete Fourier transform (DFT) can be used compute convolutions e�ciently.

The �nite convolution theorem states that the Fourier transform of a convolution is the element-wise

product of Fourier transforms:

Fn(f ∗ g) = n(Fnf)� (Fng). (7.2)

In other words, convolution in the time domain is equivalent to component-wise multiplication in the

frequency domain. Here Fn is the DFT on Rn, ∗ is discrete convolution, and � is component-wise

multiplication. Thus, the convolution of f and g can be computed by

f ∗ g = nF−1
n ((Fnf)� (Fng)), (7.3)

where F−1
n is the inverse discrete Fourier transform (IDFT). The fast Fourier transform (FFT) puts

the cost of (7.3) at O(n log n), a huge improvement over the naïve method.

1

2 Lab 7. Convolution and Filtering

Note

Although individual samples are real numbers, results of the IDFT may have small complex

components due to rounding errors. These complex components can be safely discarded by

taking only the real part of the output of the IDFT.

>>> import numpy

>>> from scipy.fftpack import fft, ifft # Fast DFT and IDFT functions.

>>> f = np.random.random(2048)

>>> f_dft_idft = ifft(fft(f)).real # Keep only the real part.

>>> np.allclose(f, f_dft_idft) # Check that IDFT(DFT(f)) = f.

True

Achtung!

SciPy uses a di�erent convention to de�ne the DFT and IDFT than this and the previous lab,

resulting in a slightly di�erent form of the convolution theorem. Writing SciPy's DFT as F̂n

and its IDFT as F̂−1
n , we have F̂n = nFn, so (7.3) becomes

f ∗ g = F̂−1
n ((F̂nf)� (F̂ng)), (7.4)

without a factor of n. Use (7.4), not (7.3), when using fft() and ifft() from scipy.fftpack.

Circular Convolution

The de�nition (7.1) and the identity (7.3) require f and g to be periodic vectors. However, the

convolution f ∗g can always be computed by simply treating each vector as periodic. The convolution

of two raw sample vectors is therefore called the periodic or circular convolution. This strategy mixes

sounds from the end of each signal with sounds at the beginning of each signal.

Problem 1.

Implement the __mul__() magic method for the SoundWave class so that if A and B are

SoundWave instances, A * B creates a new SoundWave object whose samples are the circu-

lar convolution of the samples from A and B. If the samples from A and B are not the same

length, append zeros to the shorter array to make them the same length before convolving. Use

scipy.fftpack and (7.4) to compute the convolution, and raise a ValueError if the sample

rates from A and B are not equal.

A circular convolution creates an interesting e�ect on a signal when convolved with a

segment of white noise: the sound loops seamlessly from the end back to the beginning. To

see this, generate two seconds of white noise (at the same sample rate as tada.wav) with the

following code.

3

>>> rate = 22050 # Create 2 seconds of white noise at a given rate.

>>> white_noise = np.random.randint(-32767, 32767, rate*4, dtype=np.int16)

Next, convolve tada.wav with the white noise. Finally, use the >> operator to append the

convolution result to itself. This �nal signal sounds the same from beginning to end, even

though it is the concatenation of two signals.

Linear Convolution

Although circular convolutions can give interesting results, most common sound mixtures do not

combine sounds at the beginning of one signal with sounds at the end of another. Whereas circular

convolution assumes that the samples represent a full period of a periodic function, linear convolution

aims to combine non-periodic discrete signals in a way that prevents the beginnings and endings from

interacting. Given two samples with lengths n and m, the simplest way to achieve this is to pad both

samples with zeros so that they each have length n+m− 1, compute the convolution of these larger

arrays, and take the �rst n+m− 1 entries of that convolution.

Problem 2.

Implement the __pow__() magic method for the SoundWave class so that if A and B are

SoundWave instances, A ** B creates a new SoundWave object whose samples are the linear

convolution of the samples from A and B. Raise a ValueError if the sample rates from A and

B are not equal.

Because scipy.fftpack performs best when the length of the inputs is a power of 2, start

by computing the smallest 2a such that 2a ≥ n + m − 1, where a ∈ N and n and m are the

number of samples from A and B, respectively. Append zeros to each sample so that they each

have 2a entries, then compute the convolution of these padded samples using (7.4). Use only

the �rst n+m− 1 entries of this convolution as the samples of the returned SoundWave object.

To test your method, read CGC.wav and GCG.wav. Time (separately) the convolution of

these signals with SoundWave.__pow__() and with scipy.signal.fftconvolve(). Compare

the results by listening to the original and convolved signals.

Problem 3. Clapping in a large room with an echo produces a sound that resonates in the

room for up to several seconds. This echoing sound is referred to as the impulse response of

the room, and is a way of approximating the acoustics of a room. When the sound of a single

instrument in a carpeted room is convolved with the impulse response from a concert hall, the

new signal sounds as if the instrument is being played in the concert hall.

The �le chopin.wav contains a short clip of a piano being played in a room with little or no

echo, and balloon.wav is a recording of a balloon being popped in a room with a substantial

echo (the impulse). Use your method from Problem 2 or scipy.signal.fftconvolve() to

compute the linear convolution of chopin.wav and balloon.wav.

4 Lab 7. Convolution and Filtering

Filtering Frequencies with the DFT
The DFT also provides a way to clean a signal by altering some of its frequencies. Consider

noisy1.wav, a noisy recording of a short voice clip. The time-domain plot of the signal only shows

that the signal has a lot of static. On the other hand, the signal's DFT suggests that the static may

be the result of some concentrated noise between about 1250�2600 Hz. Removing these frequencies

could result in a much cleaner signal.

0 1 2 3 4 5 6 7 8
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

M
ag

ni
tu

de

1e7

Figure 7.1: The time-domain plot (left) and DFT (right) of noisy1.wav.

To implement this idea, recall that the kth entry of the DFT array c = Fnf corresponds to the

frequency v = kr/n in Hertz, where r is the sample rate and n is the number of samples. Hence,

the DFT entry ck corresponding to a given frequency v in Hertz has index k = vn/r, rounded to an

integer if needed. In addition, since the DFT is symmetric, cn−k also corresponds to this frequency.

This suggests a strategy for �ltering out an unwanted interval of frequencies [vlow, vhigh] from a signal:

1. Compute the integer indices klow and khigh corresponding to vlow and vhigh, respectively.

2. Set the entries of the signal's DFT from klow to khigh and from n − khigh to n − klow to zero,

e�ectively removing those frequencies from the signal.

3. Take the IDFT of the modi�ed DFT to obtain the cleaned signal.

Using this strategy to �lter noisy1.wav results in a much cleaner signal. However, any �good�

frequencies in the a�ected range are also removed, which may decrease the overall sound quality.

The goal, then, is to remove only as many frequencies as necessary.

0 1 2 3 4 5 6 7 8
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

M
ag

ni
tu

de

1e7

Figure 7.2: The time-domain plot (left) and DFT (right) of noisy1.wav after being cleaned.

5

Problem 4. Add a method to the SoundWave class that accepts two frequencies vlow and vhigh
in Hertz. Compute the DFT of the stored samples and zero out the frequencies in the range

[vlow, vhigh] (remember to account for the symmetry DFT). Take the IDFT of the altered array

and store it as the sample array.

Test your method by cleaning noisy1.wav, then clean noisy2.wav, which also has some

arti�cial noise that obscures the intended sound.

(Hint: plot the DFT of noisy2.wav to determine which frequencies to eliminate.)

A digital audio signal made of a single sample vector with is called monoaural or mono. When

several sample vectors with the same sample rate and number of samples are combined into a matrix,

the overall signal is called stereophonic or stereo. This allows multiple speakers to each play one

channel�one of the original sample vectors�simultaneously. �Stereo� usually means there are two

channels, but there may be any number of channels (5.1 surround sound, for instance, has �ve).

Most stereo sounds are read as n×m matrices, where n is the number of samples and m is the

number of channels (i.e., each column is a channel). However, some functions, including Jupyter's

embedding tool IPython.display.Audio(), receive stereo signals as m× n matrices (each row is a

channel). Be aware that both conventions are common.

Problem 5. During the 2010 World Cup in South Africa, large plastic horns called vuvuzelas

were blown excessively throughout the games. Broadcasting organizations faced di�culties with

their programs due to the incessant noise level. Eventually, audio �ltering techniques were used

to cancel out the sound of the vuvuzela, which has a frequency of around 200�500 Hz.

The �le vuvuzela.wava is a stereo sound with two channels. Use your function from

Problem 4 to clean the sound clip by �ltering out the vuvuzela frequencies in each channel.

Recombine the two cleaned samples.

aSee https://www.youtube.com/watch?v=g_0NoBKWCT8.

The Two-dimensional Discrete Fourier Transform

The DFT can be easily extended to any number of dimensions. Computationally, the problem reduces

to performing the usual one-dimensional DFT iteratively along each of the dimensions. For example,

to compute the two-dimensional DFT of an m × n matrix, calculate the usual DFT of each of the

n columns, then take the DFT of each of the m rows of the resulting matrix. Calculating the two-

dimensional IDFT is done in a similar fashion, but in reverse order: �rst calculate the IDFT of the

rows, then the IDFT of the resulting columns.

>>> from scipy.fftpack import fft2, ifft2

>>> A = np.random.random((10,10))

>>> A_dft = fft2(A) # Calculate the 2d DFT of A.

>>> A_dft_ifft = ifft2(A_dft).real # Calculate the 2d IDFT.

>>> np.allclose(A, A_dft_ifft)

True

https://www.youtube.com/watch?v=g_0NoBKWCT8

6 Lab 7. Convolution and Filtering

Just as the one-dimensional DFT can be used to remove noise in sounds, its two-dimensional

counterpart can be used to remove �noise� in images. The procedure is similar to the �ltering

technique in Problems 4 and 5: take the two-dimensional DFT of the image matrix, modify certain

entries of the DFT matrix to remove unwanted frequencies, then take the IDFT to get a cleaner

version of the original image. This strategy makes the fairly strong assumption that the noise in

the image is periodic and corresponds to certain frequencies. While this may seem like an unlikely

scenario, it does actually occur in many digital images�for an example, try taking a picture of a

computer screen with a digital camera.

(a) The original blurry image. (b) The DFT of the original image.

(c) The improved image. (d) The DFT of the improved image.

Figure 7.3: To remove noise from an image, take the DFT of the image and replace the abnormalities

with values more consistent with the rest of the DFT. Notice that the new image is less noisy, but

only slightly. This is because only some of the abnormalities in the DFT were changed; in order to

further decrease the noise, we would need to further alter the DFT.

7

To begin cleaning an image with the DFT, take the two-dimensional DFT of the image matrix.

Identify spikes�abnormally high frequency values that may be causing the noise�in the image DFT

by plotting the log of the magnitudes of the Fourier coe�cients. With cmap="gray", spikes show up

as bright spots. See Figures 7.3a�7.3b.

Read the image.

>>> import imageio

>>> image = imageio.imread("noisy_face.png")

Plot the log magnitude of the image's DFT.

>>> im_dft = fft2(image)

>>> plt.imshow(np.log(np.abs(im_dft)), cmap="gray")

>>> plt.show()

Instead of setting spike frequencies to zero (as was the case for sounds), replace them with

values that are similar to those around them. There are many ways to do this, but one convention

is to simply �patch� each spike by setting portions of the DFT matrix to some set value, such as the

mean of the DFT array. See Figure 7.3d.

Once the spikes have been covered, take the IDFT of the modi�ed DFT to get a (hopefully

cleaner) image. Notice that Figure 7.3c still has noise present, but it is a slight improvement over the

original. However, it often su�ces to remove some of the noise, even if it is not possible to remove

it all with this method.

Problem 6. The �le license_plate.png contains a noisy image of a license plate. The bottom

right corner of the plate has is a sticker with information about the month and year that the

vehicle registration was renewed. However, in its current state, the year is not clearly legible.

Use the two-dimensional DFT to clean up the image enough so that the year in the bottom

right corner is legible. This may require a little trial and error.

	Convolution and Filtering

