
8 Introduction to
Wavelets

Lab Objective: Wavelets are used to sparsely represent information. This makes them useful in

a variety of applications. We explore both the one- and two-dimensional discrete wavelet transforms

using various types of wavelets. We then use a Python package called PyWavelets for further wavelet

analysis including image cleaning and image compression.

Wavelet Functions
Wavelets families are sets of orthogonal functions (wavelets) designed to decompose nonperiodic,

piecewise continuous functions. These families have four types of wavelets: mother, daughter, father,

and son functions. Father and son wavelets contain information related to the general movement of

the function, while mother and daughter wavelets contain information related to the details of the

function. The father and mother wavelets are the basis of a family of wavelets. Son and daughter

wavelets are just scaled translates of the father and mother wavelets, respectively.

Haar Wavelets

The Haar Wavelet family is one of the most widely used wavelet families in wavelet analysis. This

set includes the father, mother, son, and daughter wavelets de�ned below. The Haar father (scaling)

function is given by

ϕ(x) =

{
1 if 0 ≤ x < 1

0 otherwise.

The Haar son wavelets are scaled and translated versions of the father wavelet:

ϕjk(x) = ϕ(2jx− k) =

{
1 if k

2j ≤ x <
k+1
2j

0 otherwise.

The Haar mother wavelet function is de�ned as

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise.

The Haar daughter wavelets are scaled and translated versions of the mother wavelet

ψjk = ψ(2jx− k)

1

2 Lab 8. Introduction to Wavelets

Wavelet Decompositions

Information (such as a mathematical function or signal) can be stored and analyzed by considering

its wavelet decomposition. A wavelet decomposition is a linear combination of wavelets. For example,

a mathematical function f can be approximated as a combination of Haar son and daughter wavelets

as follows:

f(x) =

∞∑
k=−∞

akϕm,k(x) +

∞∑
k=−∞

bm,kψm,k(x) + · · ·+
∞∑

k=−∞

bn,kψn,k(x)

where m < n, and all but a �nite number of the ak and bj,k terms are nonzero. The ak terms are

often referred to as approximation coe�cients while the bj,k terms are known as detail coe�cients.

The approximation coe�cients typically capture the broader, more general features of a signal while

the detail coe�cients capture smaller details and noise.

A wavelet decomposition can be done with any family of wavelet functions. Depending on the

properties of the wavelet and the function (or signal) f , f can be approximated to an arbitrary level

of accuracy. Each arbitrary wavelet family has a mother wavelet ψ and a father wavelet ϕ which are

the basis of the family. A countably in�nite set of wavelet functions (daughter and son wavelets) can

be generated using dilations and shifts of the �rst two functions where m, k ∈ Z:

ψm,k(x) = ψ(2mx− k)
ϕm,k(x) = ϕ(2mx− k).

The Discrete Wavelet Transform

The mapping from a function to a sequence of wavelet coe�cients is called the discrete wavelet

transform. The discrete wavelet transform is analogous to the discrete Fourier transform. Now,

instead of using trigonometric functions, di�erent families of basis functions are used.

In the case of �nitely-sampled signals and images, there exists an e�cient algorithm for com-

puting the wavelet decomposition. Commonly used wavelets have associated high-pass and low-pass

�lters which are derived from the wavelet and scaling functions, respectively.

When the low-pass �lter is convolved with the sampled signal, low frequency (also known as

approximation) information is extracted. This is similar to turning up the bass on a speaker, which

extracts the low frequencies of a sound wave. This �lter highlights the overall (slower-moving) pattern

without paying too much attention to the high frequency details and extracts the approximation

coe�cients.

When the high-pass �lter is convolved with the sampled signal, high frequency information (also

known as detail) is extracted. This is similar to turning up the treble on a speaker, which extracts

the high frequencies of a sound wave. This �lter highlights the small changes found in the signal and

extracts the detail coe�cients.

The two primary operations of the algorithm are the discrete convolution and downsampling,

denoted ∗ and DS, respectively. First, a signal is convolved with both �lters. The resulting arrays

will be twice the size of the original signal because the frequency of the sample will have changed

by a factor of 2. To remove this redundant information, the resulting arrays are downsampled. In

the context of this lab, a �lter bank is the combined process of convolving with a �lter, and then

downsampling. The result will be an array of approximation coe�cients A and an array of detail

coe�cients D. This process can be repeated on the new approximation to obtain another layer of

approximation and detail coe�cients. See Figure 8.1.

3

A common lowpass �lter is the averaging �lter. Given an array x, the averaging �lter produces

an array y where yn is the average of xn and xn−1. In other words, the averaging �lter convolves an

array with the array L =
[
1
2

1
2

]
. This �lter preserves the main idea of the data. The corresponding

highpass �lter is the distance �lter. Given an array x, the distance �lter produces an array y where

yn is the distance between xn and xn−1. In other words, the di�erence �lter convolves an array with

the array H =
[
− 1

2
1
2

]
. This �lter preserves the details of the data.

For the Haar Wavelet, we will use the lowpass and highpass �lters mentioned. In order for

this �lters to have inverses, the �lters must be normalized (for more on why this is, see Additional

Materials). The resulting lowpass and highpass �lters for the Haar Wavelets are the following:

L =
[√

2
2

√
2
2

]
H =

[
−
√
2
2

√
2
2

]

Aj

Lo

Hi

Aj+1

Dj+1

Key: = convolve = downsample

Figure 8.1: The one-dimensional discrete wavelet transform implemented as a �lter bank.

As noted earlier, the key mathematical operations of the discrete wavelet transform are con-

volution and downsampling. Given a �lter and a signal, the convolution can be obtained using

scipy.signal.fftconvolve().

>>> from scipy.signal import fftconvolve

>>> # Initialize a filter.

>>> L = np.ones(2)/np.sqrt(2)

>>> # Initialize a signal X.

>>> X = np.sin(np.linspace(0,2*np.pi,16))

>>> # Convolve X with L.

>>> fftconvolve(X, L)

[-1.84945741e-16 2.87606238e-01 8.13088984e-01 1.19798126e+00

1.37573169e+00 1.31560561e+00 1.02799937e+00 5.62642704e-01

7.87132986e-16 -5.62642704e-01 -1.02799937e+00 -1.31560561e+00

-1.37573169e+00 -1.19798126e+00 -8.13088984e-01 -2.87606238e-01

-1.84945741e-16]

4 Lab 8. Introduction to Wavelets

The convolution operation alone gives redundant information, so it is downsampled to keep

only what is needed. The array will be downsampled by a factor of 2, which means keeping only

every other entry:

>>> # Downsample an array X.

>>> sampled = X[1::2] # Keeps odd entries

Both the approximation and detail coe�cients are computed in this manner. The approximation

uses the low-pass �lter while the detail uses the high-pass �lter. Implementation of a �lter bank is

found in Algorithm 8.1.

Algorithm 8.1 The one-dimensional discrete wavelet transform. X is the signal to be transformed,

L is the low-pass �lter, H is the high-pass �lter and n is the number of �lter bank iterations.

1: procedure dwt(X,L,H, n)

2: A0 ← X . Initialization.

3: for i = 0 . . . n− 1 do

4: Di+1 ← DS(Ai ∗H) . High-pass �lter and downsample.

5: Ai+1 ← DS(Ai ∗ L) . Low-pass �lter and downsample.

6: return An, Dn, Dn−1, . . . , D1.

Problem 1. Write a function that calculates the discrete wavelet transform using Algorithm

8.1. The function should return a list of one-dimensional NumPy arrays in the following form:

[An, Dn, . . . , D1].

Test your function by calculating the Haar wavelet coe�cients of a noisy sine signal with

n = 4:

domain = np.linspace(0, 4*np.pi, 1024)

noise = np.random.randn(1024)*.1

noisysin = np.sin(domain) + noise

coeffs = dwt(noisysin, L, H, 4)

Plot the original signal with the approximation and detail coe�cients and verify that they

match the plots in Figure 8.2.

(Hint: Use array broadcasting).

5

X

A4

D4

D3

D2

D1

Figure 8.2: A level four wavelet decomposition of a signal. The top panel is the original signal, the

next panel down is the approximation, and the remaining panels are the detail coe�cients. Notice

how the approximation resembles a smoothed version of the original signal, while the details capture

the high-frequency oscillations and noise.

Inverse Discrete Wavelet Transform

The process of the discrete wavelet transform is reversible. Using modi�ed �lters, a set of detail and

approximation coe�cients can be manipulated and combined to recreate a signal. The Haar wavelet

�lters for the inverse transformation are found by reversing the operations for each �lter. The Haar

inverse �lters are given below:

L−1 =
[√

2
2

√
2
2

]
H−1 =

[√
2
2 −

√
2
2

]
The �rst row refers to the inverse high-pass �lter and the second row refers to the inverse low-pass

�lter.

Suppose the wavelet coe�cients An and Dn have been computed. An−1 can be recreated

by tracing the schematic in Figure 8.1 backwards: An and Dn are �rst upsampled, and then are

convolved with the inverse low-pass and high-pass �lters, respectively. In the case of the Haar

wavelet, upsampling involves doubling the length of an array by inserting a 0 at every other position.

To complete the operation, the new arrays are convolved and added together to obtain An−1.

>>> # Upsample the coefficient arrays A and D.

>>> up_A = np.zeros(2*A.size)

>>> up_A[::2] = A

>>> up_D = np.zeros(2*D.size)

>>> up_D[::2] = D

>>> # Convolve and add, discarding the last entry.

>>> A = fftconvolve(up_A, L)[:-1] + fftconvolve(up_D, H)[:-1]

This process is continued with the newly obtained approximation coe�cients and with the next

detail coe�cients until the original signal is recovered.

6 Lab 8. Introduction to Wavelets

Problem 2. Write a function that performs the inverse wavelet transform. The function should

accept a list of arrays (of the same form as the output of Problem 1), a reverse low-pass �lter,

and a reverse high-pass �lter. The function should return a single array, which represents the

recovered signal.

Note that the input list of arrays has length n + 1 (consisting of An together with

Dn, Dn−1, . . . , D1), so your code should perform the process given above n times.

To test your function, �rst perform the inverse transform on the noisy sine wave that you

created in the �rst problem. Then, compare the original signal with the signal recovered by

your inverse wavelet transform function using np.allclose().

Achtung!

Although Algorithm 8.1 and the preceding discussion apply in the general case, the code imple-

mentations apply only to the Haar wavelet. Because of the nature of the discrete convolution,

when convolving with longer �lters, the signal to be transformed needs to undergo a di�erent

type of lengthening in order to avoid information loss during the convolution. As such, the

functions written in Problems 1 and 2 will only work correctly with the Haar �lters and would

require modi�cations to be compatible with more wavelets.

The Two-dimensional Wavelet Transform

The generalization of the wavelet transform to two dimensions is similar to one dimensional trans-

forms. Again, the two primary operations used are convolution and downsampling. The main

di�erence in the two-dimensional case is the number of convolutions and downsamples per iteration.

First, the convolution and downsampling are performed along the rows of an array. This results in

two new arrays, as in the one dimensional case. Then, convolution and downsampling are performed

along the columns of the two new arrays. This results in four �nal arrays that make up the new

approximation and detail coe�cients. See Figure 8.3.

When implemented as an iterative �lter bank, each pass through the �lter bank yields one

set of approximation coe�cients plus three sets of detail coe�cients. More speci�cally, if the two-

dimensional array X is the input to the �lter bank, the arrays LL, LH, HL, and HH are obtained.

LL is a smoothed approximation of X (similar to An in the one-dimensional case), and the other

three arrays contain detail coe�cients that capture high-frequency oscillations in vertical, horizontal,

and diagonal directions. The arrays LL, LH, HL, and HH are known as subbands. Any or all of

the subbands can be fed into a �lter bank to further decompose the signal into additional subbands.

This decomposition can be represented by a partition of a rectangle, called a subband pattern. The

subband pattern for one pass of the �lter bank is shown in Figure 8.4, with an example of an image

decomposition given in Figure 8.5.

7

LLj

Lo

Hi

Hi

Lo

Hi

Lo LLj+1

LHj+1

HLj+1

HHj+1

rows columns

Key: = convolve = downsample

Figure 8.3: The two-dimensional discrete wavelet transform implemented as a �lter bank.

X

LL LH

HL HH

Figure 8.4: The subband pattern for one step in the 2-dimensional wavelet transform.

8 Lab 8. Introduction to Wavelets

Figure 8.5: Subbands for the mandrill image after one pass through the �lter bank. Note how the

upper left subband (LL) is an approximation of the original Mandrill image, while the other three

subbands highlight the stark vertical, horizontal, and diagonal changes in the image.

Original image source: http://sipi.usc.edu/database/.

The wavelet coe�cients obtained from a two-dimensional wavelet transform are used to ana-

lyze and manipulate images at di�ering levels of resolution. Images are often sparsely represented

by wavelets; that is, most of the image information is captured by a small subset of the wavelet

coe�cients. This is a key fact for wavelet-based image compression and will be discussed in further

detail later in the lab.

The PyWavelets Module
PyWavelets is a Python package designed for wavelet analysis. Although it has many other uses,

in this lab it will primarily be used for image manipulation. PyWavelets can be installed using the

following command:

$ pip install PyWavelets

http://sipi.usc.edu/database/

9

PyWavelets provides a simple way to calculate the subbands resulting from one pass through

the �lter bank. The following code demonstrates how to �nd the approximation and detail subbands

of an image.

>>> from imageio import imread

>>> import pywt # The PyWavelets package.

The True parameter produces a grayscale image.

>>> mandrill = imread('mandrill1.png', True)

Use the Daubechies 4 wavelet with periodic extension.

>>> lw = pywt.dwt2(mandrill, 'db4', mode='per')

The function pywt.dwt2() calculates the subbands resulting from one pass through the �lter

bank. The second positional argument speci�es the type of wavelet to be used in the transform. The

mode keyword argument sets the extension mode, which determines the type of padding used in the

convolution operation. For the problems in this lab, always use mode='per', which is the periodic

extension. The function dwt2() returns a list. The �rst entry of the list is the LL, or approximation,

subband. The second entry of the list is a tuple containing the remaining subbands, LH, HL, and

HH (in that order).

PyWavelets supports a number of di�erent wavelets which are divided into di�erent classes

known as families. The supported families and their wavelet instances can be listed by executing the

following code:

>>> # List the available wavelet families.

>>> print(pywt.families())

['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus', 'mexh', 'morl', '←↩
cgau', 'shan', 'fbsp', 'cmor']

>>> # List the available wavelets in a given family.

>>> print(pywt.wavelist('coif'))

['coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'coif6', 'coif7', 'coif8', 'coif9←↩
', 'coif10', 'coif11', 'coif12', 'coif13', 'coif14', 'coif15', 'coif16', '←↩
coif17']

Di�erent wavelets have di�erent properties; the most suitable wavelet is dependent on the

speci�c application. For example, the morlet wavelet is closely related to human hearing and vision.

Note that not all of these families work with the function pywt.dwt2(), because they are continuous

wavelets. Choosing which wavelet is used is partially based on the properties of a wavelet, but since

many wavelets share desirable properties, the best wavelet for a particular application is often not

known without some type of testing.

Note

The numerical value in a wavelets name refers to the �lter length. This value is multiplied by

the standard �lter length of the given wavelet, resulting in the new �lter length. For example,

coif1 has �lter length 6 and coif2 has �lter length 12.

10 Lab 8. Introduction to Wavelets

Problem 3. Explore the two-dimensional wavelet transform by completing the following:

1. Save a picture of a raccoon with the following code

>>> from scipy.misc import face

>>> racoon = face(True)

2. Plot the subbands of raccoon as described above (using the Daubechies 4 wavelet with

periodic extension). Compare this with the subbands of the mandrill image shown in

Figure 8.5.

3. Compare the subband patterns of the haar, symlet, and coi�et wavelets of the raccoon

picture by plotting the subbands after one pass through the �lter bank. The haar subband

should have more detail than the symlet subband, and the symlet subband should have

more detail than the coi�et wavelet.

The function pywt.wavedec2() is similar to pywt.dwt2(), but it also includes a keyword ar-

gument, level, which speci�es the number of times to pass an image through the �lter bank. It

will return a list of subbands, the �rst of which is the �nal approximation subband, while the

remaining elements are tuples which contain sets of detail subbands (LH, HL, and HH). If

level is not speci�ed, the number of passes through the �lter bank will be the maximum level

where the decomposition is still useful. The function pywt.waverec2() accepts a list of sub-

band patterns (like the output of pywt.wavedec2() or pywt.dwt2()), a name string denoting the

wavelet, and a keyword argument mode for the extension mode. It returns a reconstructed im-

age using the reverse �lter bank. When using this function, be sure that the wavelet and mode

match the deconstruction parameters. PyWavelets has many other useful functions including dwt

(), idwt() and idwt2() which can be explored further in the documentation for PyWavelets,

https://pywavelets.readthedocs.io/en/latest/index.html.

Applications

Noise Reduction

Noise in an image is de�ned as unwanted visual artifacts that obscure the true image. Images acquire

noise from a variety of sources, including cameras, data transfer, and image processing algorithms.

This section will focus on reducing a particular type of noise in images called Gaussian white noise.

Gaussian white noise causes every pixel in an image to be perturbed by a small amount. Many

types of noise, including Gaussian white noise, are very high-frequency. Since many images are

relatively sparse in high-frequency domains, noise in an image can be safely removed from the high

frequency subbands while minimally distorting the true image. A basic, but e�ective, approach to

reducing Gaussian white noise in an image is thresholding. Thresholding can be done in two ways,

referred to as hard and soft thresholding.

Given a positive threshold value τ , hard thresholding sets every detail coe�cient whose mag-

nitude is less than τ to zero, while leaving the remaining coe�cients untouched. Soft thresholding

also zeros out all coe�cients of magnitude less than τ , but in addition maps the remaining positive

coe�cients β to β − τ and the remaining negative coe�cients α to α+ τ .

https://pywavelets.readthedocs.io/en/latest/index.html

11

Once the coe�cients have been thresholded, the inverse wavelet transform is used to recover

the denoised image. The threshold value is generally a function of the variance of the noise, and in

real situations, is not known. In fact, noise variance estimation in images is a research area in its

own right, but that goes beyond the scope of this lab.

Problem 4. Write two functions that accept a list of wavelet coe�cients in the usual form,

as well as a threshold value. Each function returns the thresholded wavelet coe�cients (also

in the usual form). The �rst function should implement hard thresholding and the second

should implement soft thresholding. While writing these two functions, remember that only

the detail coe�cients are thresholded, so the �rst entry of the input coe�cient list should remain

unchanged.

To test your functions, perform hard and soft thresholding on noisy_darkhair.png and

plot the resulting images together. When testing your function, use the Daubechies 4 wavelet

and four sets of detail coe�cients (level=4 when using wavedec2()). For soft thresholding use

τ = 20, and for hard thresholding use τ = 40.

Image Compression

Transform methods based on Fourier and wavelet analysis play an important role in image compres-

sion; for example, the popular JPEG image compression standard is based on the discrete cosine

transform. The JPEG2000 compression standard and the FBI Fingerprint Image database, along

with other systems, take the wavelet approach.

The general framework for compression is as follows. First, the image to be compressed under-

goes some form of preprocessing, depending on the particular application. Next, the discrete wavelet

transform is used to calculate the wavelet coe�cients, and these are then quantized, i.e. mapped to

a set of discrete values (for example, rounded to the nearest integer). The quantized coe�cients are

then passed through an entropy encoder (such as Hu�man Encoding), which reduces the number

of bits required to store the coe�cients. What remains is a compact stream of bits that can be

saved or transmitted much more e�ciently than the original image. The steps above are nearly all

invertible (the only exception being quantization), allowing the original image to be almost perfectly

reconstructed from the compressed bitstream. See Figure 8.6.

Image Pre-Processing Wavelet Decomposition

Quantization Entropy Coding Bit Stream

Figure 8.6: Wavelet Image Compression Schematic

WSQ: The FBI Fingerprint Image Compression Algorithm

The Wavelet Scalar Quantization (WSQ) algorithm is among the �rst successful wavelet-based image

compression algorithms. It solves the problem of storing millions of �ngerprint scans e�ciently while

meeting the law enforcement requirements for high image quality. This algorithm is capable of

achieving compression ratios in excess of 10-to-1 while retaining excellent image quality; see Figure

12 Lab 8. Introduction to Wavelets

8.7. This section of the lab steps through a simpli�ed version of this algorithm by writing a Python

class that performs both the compression and decompression. Di�erences between this simpli�ed

algorithm and the complete algorithm are found in the Additional Material section at the end of this

lab. Most of the methods of the class have already been implemented. The following problems will

detail the methods you will need to implement yourself.

(a) Uncompressed (b) 12:1 compressed (c) 26:1 compressed

Figure 8.7: Fingerprint scan at di�erent levels of compression. Original image source: http://www.

nist.gov/itl/iad/ig/wsq.cfm.

WSQ: Preprocessing

Preprocessing in this algorithm ensures that roughly half of the new pixel values are negative, while

the other half are positive, and all fall in the range [−128, 128]. The input to the algorithm is a

matrix of nonnegative 8-bit integer values giving the grayscale pixel values for the �ngerprint image.

The image is processed by the following formula:

M ′ =
M −m

s
,

where M is the original image matrix, M ′ is the processed image, m is the mean pixel value, and

s = max{max(M) −m,m − min(M)}/128 (here max(M) and min(M) refer to the maximum and

minimum pixel values in the matrix).

Problem 5. Implement the preprocessing step as well as its inverse by implementing the class

methods pre_process() and post_process(). Each method accepts a NumPy array (the

image) and returns the processed image as a NumPy array. In the pre_process() method,

calculate the values of m and s given above and store them in the class attributes _m and _s.

WSQ: Calculating the Wavelet Coefficients

The next step in the compression algorithm is decomposing the image into subbands of wavelet

coe�cients. In this implementation of the WSQ algorithm, the image is decomposed into �ve sets

of detail coe�cients (level=5) and one approximation subband, as shown in Figure 8.8. Each of

these subbands should be placed into a list in the same ordering as in Figure 8.8 (another way

to consider this ordering is the approximation subband followed by each level of detail coe�cients

[LL5, LH5, HL5, HH5, LH4, HL4, . . . ,HH1]).

http://www.nist.gov/itl/iad/ig/wsq.cfm
http://www.nist.gov/itl/iad/ig/wsq.cfm

13

Problem 6. Implement the class method decompose(). This function should accept an image

to decompose and should return a list of ordered subbands. Use the function pywt.wavedec2()

with the 'coif1' wavelet to obtain the subbands. These subbands should then be ordered in

a single list as described above.

Implement the inverse of the decomposition by writing the class method recreate().

This function should accept a list of 16 subbands (ordered like the output of decompose()) and

should return a reconstructed image. Use pywt.waverec2() to reconstruct an image from the

subbands. Note that you will need to adjust the accepted list in order to adhere to the required

input for waverec2().

0 1
2 3 4

5 6
7

8 9

10

11 12

13

14 15

Figure 8.8: Subband Pattern for simpli�ed WSQ algorithm.

WSQ: Quantization

Quantization is the process of mapping each wavelet coe�cient to an integer value and is the main

source of compression in the algorithm. By mapping the wavelet coe�cients to a relatively small set

of integer values, the complexity of the data is reduced, which allows for e�cient encoding of the

information in a bit string. Further, a large portion of the wavelet coe�cients will be mapped to 0 and

discarded completely. The fact that �ngerprint images tend to be very nearly sparse in the wavelet

domain means that little information is lost during quantization. Care must be taken, however, to

perform this quantization in a manner that achieves good compression without discarding so much

information that the image cannot be accurately reconstructed.

Given a wavelet coe�cient a in subband k, the corresponding quantized coe�cient p is given

14 Lab 8. Introduction to Wavelets

by

p =


⌊
a−Zk/2

Qk

⌋
+ 1, a > Zk/2

0, −Zk/2 ≤ a ≤ Zk/2⌈
a+Zk/2

Qk

⌉
− 1, a < −Zk/2,

where Zk and Qk are dependent on the subband. They determine how much compression is achieved.

If Qk = 0, all coe�cients are mapped to 0.

Selecting appropriate values for these parameters is a tricky problem in itself, and relies on

heuristics based on the statistical properties of the wavelet coe�cients. The methods that calculate

these values have already been initialized.

Quantization is not a perfectly invertible process. Once the wavelet coe�cients have been

quantized, some information is permanently lost. However, wavelet coe�cients âk in subband k can

be roughly reconstructed from the quantized coe�cients p using

âk =


(p− C)Qk + Zk/2, p > 0

0, p = 0

(p+ C)Qk − Zk/2, p < 0,

where C is a new dequanitization parameter. This process is called dequantization. Again, if Qk = 0,

âk = 0 should be returned.

Problem 7. Implement the quantization step by writing the quantize() method of your class.

This method should accept a NumPy array of coe�cients and the quantization parameters Qk

and Zk. The function should return a NumPy array of the quantized coe�cients.

Also implement the dequantize() method of your class using the formula given above.

This function should accept the same parameters as quantize() as well as a parameter C which

defaults to .44. The function should return a NumPy array of dequantized coe�cients.

(Hint: Masking and array slicing will help keep your code short and fast when implement-

ing both of these methods. Remember the case for Qk = 0. Test your functions by comparing

the output of your functions to a hand calculation on a small matrix.)

WSQ: The Rest

The remainder of the compression and decompression methods have already been implemented in

the WSQ class. The following discussion explains the basics of what happens in those methods.

Once all of the subbands have been quantized, they are divided into three groups. The �rst group

contains the smallest ten subbands (positions zero through nine), while the next two groups contain

the three subbands of next largest size (positions ten through twelve and thirteen through �fteen,

respectively). All of the subbands of each group are then �attened and concatenated with the other

subbands in the group. These three arrays of values are then mapped to Hu�man indices. Since

the wavelet coe�cients for �ngerprint images are typically very sparse, special indices are assigned

to lists of sequential zeros of varying lengths. This allows large chunks of information to be stored

as a single index, greatly aiding in compression. The Hu�man indices are then assigned a bit string

representation through a Hu�man map.

Python does not natively include all of the tools necessary to work with bit strings, but the

Python package bitstring does have these capabilities. Download bitstring using the following com-

mand:

15

$ pip install bitstring

Import the package with the following line of code:

>>> import bitstring as bs

WSQ: Calculating the Compression Ratio

The methods of compression and decompression are now fully implemented. The �nal task is to

verify how much compression has taken place. The compression ratio is the ratio of the number of

bits in the original image to the number of bits in the encoding. Assuming that each pixel of the

input image is an 8-bit integer, the number of bits in the original image is just eight times the number

of pixels (the number of pixels in the original source image is stored in the class attribute _pixels).

The number of bits in the encoding can be calculated by adding up the lengths of each of the three

bit strings stored in the class attribute _bitstrings.

Problem 8. Implement the method get_ratio() by calculating the ratio of compression. The

function should not accept any parameters and should return the compression ratio.

Your compression algorithm is now complete! You can test your class with the following

code. The compression ratio should be approximately 18.

Try out different values of r between .1 to .9.

r = .5

finger = imread('uncompressed_finger.png', True)

wsq = WSQ()

wsq.compress(finger, r)

print(wsq.get_ratio())

new_finger = wsq.decompress()

plt.subplot(211)

plt.imshow(finger, cmap=plt.cm.Greys_r)

plt.subplot(212)

plt.imshow(np.abs(new_finger), cmap=plt.cm.Greys_r)

plt.show()

16 Lab 8. Introduction to Wavelets

Additional Material

Haar Wavelet Transform

The Haar Wavelet Transform is a general matrix transform used to convolve Haar Wavelets. It

is found by combining the convolution matrices for a lowpass and highpass �lter such that one is

directly on top of the other. The lowpass �lter is taking the average of every two elements in an

array and the highpass �lter is taking the di�erence of every two elements in an array. Redundant

information given in the new matrix is then removed via downsampling. However, in order for the

transform matrix to have the property AT = A−1, the columns of the matrix must be normalized.

Thus, each column is normalized (and subsequently the �lters) and the resulting matrix is the Haar

Wavelet Transform.

For more on the Haar Wavelet Transform, see Discrete Wavelet Transformations: An Elemen-

tary Approach with Applications by Patrick J. Van Fleet.

WSQ Algorithm

The o�cial standard for the WSQ algorithm is slightly di�erent from the version implemented in

this lab. One of the largest di�erences is the subband pattern that is used in the o�cial algorithm;

this pattern is demonstrated in Figure 8.9. The pattern used may seem complicated and somewhat

arbitrary, but it is used because of the relatively good empirical results when used in compression.

This pattern can be obtained by performing a single pass of the 2-dimensional �lter bank on the

image then passing each of the resulting subbands through the �lter bank resulting in 16 total

subbands. This same process is then repeated with the LL, LH and HL subbands of the original

approximation subband creating 46 additional subbands. Finally, the subband corresponding to the

top left of Figure 8.9 should be passed through the 2-dimensional �lter bank a single time.

As in the implementation given above, the subbands of the o�cial algorithm are divided into

three groups. The subbands 0 through 18 are grouped together, as are 19 through 51 and 52 through

63. The o�cial algorithm also uses a wavelet specialized for image compression that is not included

in the PyWavelets distribution. There are also some slight modi�cations made to the implementation

of the discrete wavelet transform that do not drastically a�ect performance.

17

0
2
1
3 4

5 6

7

9

8

10

7

9

8

10

11

13

12

14

15

17

16

18

19

21

20

22

27

29

28

30

23

25

24

26

31

33

32

34

35

37

36

38

43

45

44

46

39

41

40

42

47

49

48

50

51

60

62

61

63

56

58

57

59

52

54

53

55

Figure 8.9: True subband pattern for WSQ algorithm.

	Introduction to Wavelets

