
11 One-dimensional
Optimization

Lab Objective: Most mathematical optimization problems involve estimating the minimizer(s) of

a scalar-valued function. Many algorithms for optimizing functions with a high-dimensional domain

depend on routines for optimizing functions of a single variable. There are many techniques for

optimization in one dimension, each with varying degrees of precision and speed. In this lab, we

implement the golden section search method, Newton's method, and the secant method, then apply

them to the backtracking problem.

Golden Section Search
A function f : [a, b] → R satis�es the unimodal property if it has exactly one local minimum and is

monotonic on either side of the minimizer. In other words, f decreases from a to its minimizer x∗,

then increases up to b (see Figure 11.1). The golden section search method optimizes a unimodal

function f by iteratively de�ning smaller and smaller intervals containing the unique minimizer x∗.

This approach is especially useful if the function's derivative does not exist, is unknown, or is very

costly to compute.

By de�nition, the minimizer x∗ of f must lie in the interval [a, b]. To shrink the interval around

x∗, we test the following strategically chosen points.

ã = b− b− a
ϕ

b̃ = a+
b− a
ϕ

Here ϕ = 1+
√
5

2 is the golden ratio. At each step of the search, [a, b] is re�ned to either [a, b̃] or [ã, b],

called the golden sections, depending on the following criteria.

If f(ã) < f(b̃), then since f is unimodal, it must be increasing in a neighborhood of b̃. The

unimodal property also guarantees that f must be increasing on [b̃, b] as well, so x∗ ∈ [a, b̃] and we

set b = b̃. By similar reasoning, if f(ã) > f(b̃), then x∗ ∈ [ã, b] and we set a = ã. If, however,

f(ã) = f(b̃), then the unimodality of f does not guarantee anything about where the minimizer lies.

Assuming either x∗ ∈ [a, b̃] or x∗ ∈ [ã, b] allows the iteration to continue, but the method is no longer

guaranteed to converge to the local minimum.

At each iteration, the length of the search interval is divided by ϕ. The method therefore con-

verges linearly, which is somewhat slow. However, the idea is simple and each step is computationally

inexpensive.

1

2 Lab 11. One-dimensional Optimization

a x∗ ã b̃ b

f(ã)

f(b̃)

Figure 11.1: The unimodal f : [a, b] → R can be minimized with a golden section search. For the

�rst iteration, f(ã) < f(b̃), so x∗ ∈ [a, b̃]. New values of ã and b̃ are then calculated from this new,

smaller interval.

Algorithm 11.1 The Golden Section Search

1: procedure golden_section(f , a, b, tol, maxiter)

2: x0 ← (a+ b)/2 . Set the initial minimizer approximation as the interval midpoint.

3: ϕ = (1 +
√

5)/2

4: for i = 1, 2, . . . , maxiter do . Iterate only maxiter times at most.

5: c← (b− a)/ϕ

6: ã← b− c
7: b̃← a+ c

8: if f(ã) ≤ f(b̃) then . Get new boundaries for the search interval.

9: b← b̃

10: else

11: a← ã

12: x1 ← (a+ b)/2 . Set the minimizer approximation as the interval midpoint.

13: if |x0 − x1| < tol then

14: break . Stop iterating if the approximation stops changing enough.

15: x0 ← x1

16: return x1

Problem 1. Write a function that accepts a function f : R → R, interval limits a and b, a

stopping tolerance tol, and a maximum number of iterations maxiter. Use Algorithm 11.1 to

implement the golden section search. Return the approximate minimizer x∗, whether or not

the algorithm converged (true or false), and the number of iterations computed.

Test your function by minimizing f(x) = ex − 4x on the interval [0, 3], then plotting the

function and the computed minimizer together. Also compare your results to SciPy's golden

section search, scipy.optimize.golden().

3

>>> from scipy import optimize as opt

>>> import numpy as np

>>> f = lambda x : np.exp(x) - 4*x

>>> opt.golden(f, brack=(0,3), tol=.001)

1.3862578679031485 # ln(4) is the minimizer.

Newton’s Method

Newton's method is an important root-�nding algorithm that can also be used for optimization.

Given f : R→ R and a good initial guess x0, the sequence (xk)∞k=1 generated by the recursive rule

xk+1 = xk −
f(xk)

f ′(xk)

converges to a point x̄ satisfying f(x̄) = 0. The �rst-order necessary conditions from elementary

calculus state that if f is di�erentiable, then its derivative evaluates to zero at each of its local

minima and maxima. Therefore using Newton's method to �nd the zeros of f ′ is a way to identify

potential minima or maxima of f . Speci�cally, starting with an initial guess x0, set

xk+1 = xk −
f ′(xk)

f ′′(xk)
(11.1)

and iterate until |xk − xk−1| is satisfactorily small. Note that this procedure does not use the actual

function f at all, but it requires many evaluations of its �rst and second derivatives. As a result,

Newton's method converges in few iterations, but it can be computationally expensive.

Each step of (11.1) can be thought of approximating the objective function f by a quadratic

function q and �nding its unique extrema. That is, we �rst approximate f with its second-degree

Taylor polynomial centered at xk.

q(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2

This quadratic function satis�es q(xk) = f(xk) and matches f fairly well close to xk. Thus the

optimizer of q is a reasonable guess for an optimizer of f . To compute that optimizer, solve q′(x) = 0.

0 = q′(x) = f ′(xk) + f ′′(xk)(x− xk) =⇒ x = xk −
f ′(xk)

f ′′(xk)

This agrees with (11.1) using xk+1 for x. See Figure 11.2.

4 Lab 11. One-dimensional Optimization

xk xk + 1

f(x)

q(x)

Figure 11.2: A quadratic approximation of f at xk. The minimizer xk+1 of q is close to the minimizer

of f .

Newton's method for optimization works well to locate minima when f ′′(x) > 0 on the entire

domain. However, it may fail to converge to a minimizer if f ′′(x) ≤ 0 for some portion of the domain.

If f is not unimodal, the initial guess x0 must be su�ciently close to a local minimizer x∗ in order

to converge.

Problem 2. Let f : R → R. Write a function that accepts f ′, f ′′, a starting point x0, a

stopping tolerance tol, and a maximum number of iterations maxiter. Implement Newton's

method using (11.1) to locate a local optimizer. Return the approximate optimizer, whether or

not the algorithm converged, and the number of iterations computed.

Test your function by minimizing f(x) = x2 + sin(5x) with an initial guess of x0 = 0.

Compare your results to scipy.optimize.newton(), which implements the root-�nding version

of Newton's method.

>>> df = lambda x : 2*x + 5*np.cos(5*x)

>>> d2f = lambda x : 2 - 25*np.sin(5*x)

>>> opt.newton(df, x0=0, fprime=d2f, tol=1e-10, maxiter=500)

-1.4473142236328096

Note that other initial guesses can yield di�erent minima for this function.

The Secant Method

The second derivative of an objective function is not always known or may be prohibitively expen-

sive to evaluate. The secant method solves this problem by numerically approximating the second

derivative with a di�erence quotient.

f ′′(x) ≈ f ′(x+ h)− f ′(x)

h

5

Selecting x = xk and h = xk−1 − xk gives the following approximation.

f ′′(xk) ≈ f ′(xk + xk−1 − xk)− f ′(xk)

xk−1 − xk
=
f(xk)− f ′(xk−1)

xk − xk−1
(11.2)

Inserting (11.2) into (11.1) results in the complete secant method formula.

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk) =

xk−1f
′(xk)− xkf ′(xk−1)

f ′(xk)− f ′(xk−1)
(11.3)

Notice that this recurrence relation requires two previous points (both xk and xk−1) to calculate the

next estimate. This method converges superlinearly�slower than Newton's method, but faster than

the golden section search�with convergence criteria similar to Newton's method.

Problem 3. Write a function that accepts a �rst derivative f ′, starting points x0 and x1, a

stopping tolerance tol, and a maximum of iterations maxiter. Use (11.3) to implement the

Secant method. Try to make as few computations as possible by only computing f ′(xk) once

for each k. Return the minimizer approximation, whether or not the algorithm converged, and

the number of iterations computed.

Test your code with the function f(x) = x2 + sin(x) + sin(10x) and with initial guesses

of x0 = 0 and x1 = −1. Plot your answer with the graph of the function. Also compare your

results to scipy.optimize.newton(); without providing the fprime argument, this function

uses the secant method. However, it still only takes in one initial condition, so it may converge

to a di�erent local minimum than your function.

>>> df = lambda x: 2*x + np.cos(x) + 10*np.cos(10*x)

>>> opt.newton(df, x0=0, tol=1e-10, maxiter=500)

-3.2149595174761636

Descent Methods

Consider now a function f : Rn → R. Descent methods, also called line search methods, are opti-

mization algorithms that create a convergent sequence (xk)∞k=1 by the following rule.

xk+1 = xk + αkpk (11.4)

Here αk ∈ R is called the step size and pk ∈ Rn is called the search direction. The choice of pk is

usually what distinguishes an algorithm; in the one-dimensional case (n = 1), pk = f ′(xk)/f ′′(xk)

results in Newton's method, and using the approximation in (11.2) results in the secant method.

To be e�ective, a descent method must also use a good step size αk. If αk is too large, the

method may repeatedly overstep the minimum; if αk is too small, the method may converge extremely

slowly. See Figure 11.3.

6 Lab 11. One-dimensional Optimization

x0x1

Figure 11.3: If the step size αk is too large, a descent method may repeatedly overstep the minimizer.

Given a search direction pk, the best step size αk minimizes the function φk(α) = f(xk +αpk).

Since f is scalar-valued, φk : R → R, so any of the optimization methods discussed previously can

be used to minimize φk. However, computing the best αk at every iteration is not always practical.

Instead, some methods use a cheap routine to compute a step size that may not be optimal, but which

is good enough. The most common approach is to �nd an αk that satis�es the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αkDf(xk)Tpk (11.5)

−Df(xk + αkpk)Tpk ≤ −c2Df(xk)Tpk (11.6)

where 0 < c1 < c2 < 1 (for the best results, choose c1 << c2). The condition (11.5) is also called

the Armijo rule and ensures that the step decreases f . However, this condition is not enough on its

own. By Taylor's theorem,

f(xk + αkpk) = f(xk) + αkDf(xk)Tpk +O(α2
k).

Thus, a very small αk will always satisfy (11.5) since Df(xk)Tpk < 0 (as pk is a descent direction).

The condition (11.6), called the curvature condition, ensures that the αk is large enough for the

algorithm to make signi�cant progress.

It is possible to �nd an αk that satis�es the Wolfe conditions, but that is far from the minimizer

of φk(α). The strong Wolfe conditions modify (11.6) to ensure that αk is near the minimizer.

|Df(xk + αkpk)Tpk| ≤ c2|Df(xk)Tpk|

The Armijo�Goldstein conditions provide another alternative to (11.6):

f(xk) + (1− c)αkDf(xk)Tpk ≤ f(xk + αkpk) ≤ f(xk) + cαkDf(xk)Tpk,

where 0 < c < 1. These conditions are very similar to the Wolfe conditions (the right inequality is

(11.5)), but they do not require the calculation of the directional derivative Df(xk + αkpk)Tpk.

7

Backtracking

A backtracking line search is a simple strategy for choosing an acceptable step size αk: start with an

fairly large initial step size α, then repeatedly scale it down by a factor ρ until the desired conditions

are satis�ed. The following algorithm only requires α to satisfy (11.5). This is usually su�cient, but

if it �nds α's that are too small, the algorithm can be modi�ed to satisfy (11.6) or one of its variants.

Algorithm 11.2 Backtracking using the Armijo Rule

1: procedure backtracking(f , Df , xk, pk, α, ρ, c)

2: Dfp ← Df(xk)Tpk . Compute these values only once.

3: fx ← f(xk)

4: while
(
f(xk + αpk) > fx + cαDfp

)
do

5: α← ρα
return α

Problem 4. Write a function that accepts a function f : Rn → R, its derivativeDf : Rn → Rn,

an approximate minimizer xk, a search direction pk, an initial step length α, and parameters ρ

and c. Implement the backtracking method of Algorithm 11.2. Return the computed step size.

The functions f and Df should both accept 1-D NumPy arrays of length n. For example,

if f(x, y, z) = x2 + y2 + z2, then f and Df could be de�ned as follows.

>>> f = lambda x: x[0]**2 + x[1]**2 + x[2]**2

>>> Df = lambda x: np.array([2*x[0], 2*x[1], 2*x[2]])

SciPy's scipy.optimize.linesearch.scalar_search_armijo() �nds an acceptable step

size using the Armijo rule. It may not give the exact answer as your implementation since it

decreases α di�erently, but the answers should be similar.

>>> from scipy.optimize import linesearch

>>> from autograd import numpy as anp

>>> from autograd import grad

Get a step size for f(x,y,z) = x^2 + y^2 + z^2.

>>> f = lambda x: x[0]**2 + x[1]**2 + x[2]**2

>>> x = anp.array([150., .03, 40.]) # Current minimizer guesss.

>>> p = anp.array([-.5, -100., -4.5]) # Current search direction.

>>> phi = lambda alpha: f(x + alpha*p) # Define phi(alpha).

>>> dphi = grad(phi)

>>> alpha, _ = linesearch.scalar_search_armijo(phi, phi(0.), dphi(0.))

	One-dimensional Optimization

