
12 Gradient Descent
Methods

Lab Objective: Iterative optimization methods choose a search direction and a step size at each

iteration. One simple choice for the search direction is the negative gradient, resulting in the method of

steepest descent. While theoretically foundational, in practice this method is often slow to converge.

An alternative method, the conjugate gradient algorithm, uses a similar idea that results in much

faster convergence in some situations. In this lab we implement a method of steepest descent and two

conjugate gradient methods, then apply them to regression problems.

The Method of Steepest Descent
Let f : Rn → R with �rst derivative Df : Rn → Rn. The following iterative technique is a common

template for methods that aim to compute a local minimizer x∗ of f .

xk+1 = xk + αkpk (12.1)

Here xk is the kth approximation to x∗, αk is the step size, and pk is the search direction. Newton's

method and its relatives follow this pattern, but they require the calculation (or approximation)

of the inverse Hessian matrix Df2(xk)
−1 at each step. The following idea is a simpler and less

computationally intensive approach than Newton and quasi-Newton methods.

The derivativeDf(x)T (often called the gradient of f at x, sometimes notated∇f(x)) is a vector
that points in the direction of greatest increase of f at x. It follows that the negative derivative

−Df(x)T points in the direction of steepest decrease at x. The method of steepest descent chooses

the search direction pk = −Df(xk)T at each step of (12.1), resulting in the following algorithm.

xk+1 = xk − αkDf(xk)T (12.2)

Setting αk = 1 for each k is often su�cient for Newton and quasi-Newton methods. However,

a constant choice for the step size in (12.2) can result in oscillating approximations or even cause the

sequence (xk)
∞
k=1 to travel away from the minimizer x∗. To avoid this problem, the step size αk can

be chosen in a few ways.

� Start with αk = 1, then set αk = αk

2 until f(xk − αkDf(xk)
T) < f(xk), terminating the

iteration if αk gets too small. This guarantees that the method actually descends at each step

and that αk satis�es the Armijo rule, without endangering convergence.

1

2 Lab 12. Gradient Descent Methods

� At each step, solve the following one-dimensional optimization problem.

αk = argmin
α

f(xk − αDf(xk)T)

Using this choice is called exact steepest descent. This option is more expensive per iteration

than the above strategy, but it results in fewer iterations before convergence.

Problem 1. Write a function that accepts an objective function f : Rn → R, its derivative
Df : Rn → Rn, an initial guess x0 ∈ Rn, a convergence tolerance tol defaulting to 1e−5,

and a maximum number of iterations maxiter defaulting to 100. Implement the exact method

of steepest descent, using a one-dimensional optimization method to choose the step size (use

opt.minimize_scalar() or your own 1-D minimizer). Iterate until ‖Df(xk)‖∞ < tol or k >

maxiter. Return the approximate minimizer x∗, whether or not the algorithm converged (True

or False), and the number of iterations computed.

Test your function on f(x, y, z) = x4+y4+z4 (easy) and the Rosenbrock function (hard).

It should take many iterations to minimize the Rosenbrock function, but it should converge

eventually with a large enough choice of maxiter.

The Conjugate Gradient Method
Unfortunately, the method of steepest descent can be very ine�cient for certain problems. Depending

on the nature of the objective function, the sequence of points can zig-zag back and forth or get stuck

on �at areas without making signi�cant progress toward the true minimizer.

Gradient Descent, 28903 iterations

Figure 12.1: On this surface, gradient descent takes an extreme number of iterations to converge to

the minimum because it gets stuck in the �at basins of the surface.

Unlike the method of steepest descent, the conjugate gradient algorithm chooses a search direc-

tion that is guaranteed to be a descent direction, though not the direction of greatest descent. These

directions are using a generalized form of orthogonality called conjugacy.

3

Let Q be a square, positive de�nite matrix. A set of vectors {x0,x1, . . . ,xm} is called Q-

conjugate if each distinct pair of vectors xi,xj satisfy xT
i Qxj = 0. A Q-conjugate set of vectors is

linearly independent and can form a basis that diagonalizes the matrix Q. This guarantees that an

iterative method to solve Qx = b only require as many steps as there are basis vectors.

Solve a positive de�nite system Qx = b is valuable in and of itself for certain problems, but it

is also equivalent to minimizing certain functions. Speci�cally, consider the quadratic function

f(x) =
1

2
xTQx− bTx+ c.

Because Df(x)T = Qx− b, minimizing f is the same as solving the equation

0 = Df(x)T = Qx− b ⇒ Qx = b,

which is the original linear system. Note that the constant c does not a�ect the minimizer, since if

x∗ minimizes f(x) it also minimizes f(x) + c.

Using the conjugate directions guarantees an iterative method to converge on the minimizer

because each iteration minimizes the objective function over a subspace of dimension equal to the

iteration number. Thus, after n steps, where n is the number of conjugate basis vectors, the algorithm

has found a minimizer over the entire space. In certain situations, this has a great advantage over

gradient descent, which can bounce back and forth. This comparison is illustrated in Figure 12.2.

Additionally, because the method utilizes a basis of conjugate vectors, the previous search direction

can be used to �nd a conjugate projection onto the next subspace, saving computational time.

Gradient Descent, 90 iterations
Conjugate Gradient, 2 iterations

Figure 12.2: Paths traced by Gradient Descent (orange) and Conjugate Gradient (red) on a quadratic

surface. Notice the zig-zagging nature of the Gradient Descent path, as opposed to the Conjugate

Gradient path, which �nds the minimizer in 2 steps.

4 Lab 12. Gradient Descent Methods

Algorithm 12.1

1: procedure Conjugate Gradient(x0, Q, b, tol)

2: r0 ← Qx0 − b

3: d0 ← −r0
4: k ← 0

5: while ‖rk‖ ≥ tol, k < n do

6: αk ← rTkrk/d
T
kQdk

7: xk+1 ← xk + αkdk
8: rk+1 ← rk + αkQdk
9: βk+1 ← rTk+1rk+1/r

T
krk

10: dk+1 ← −rk+1 + βk+1dk
11: k ← k + 1.

return xk+1

The points xk are the successive approximations to the minimizer, the vectors dk are the

conjugate descent directions, and the vectors rk (which actually correspond to the steepest descent

directions) are used in determining the conjugate directions. The constants αk and βk are used,

respectively, in the line search, and in ensuring the Q-conjugacy of the descent directions.

Problem 2. Write a function that accepts an n×n positive de�nite matrix Q, a vector b ∈ Rn,
an initial guess x0 ∈ Rn, and a stopping tolerance. Use Algorithm 12.1 to solve the system

Qx = b. Continue the algorithm until ‖rk‖ is less than the tolerance, iterating no more than

n times. Return the solution x, whether or not the algorithm converged in n iterations or less,

and the number of iterations computed. Test your function on the simple system

Q =

[
2 0

0 4

]
, b =

[
1

8

]
,

which has solution x∗ =
[
1
2 , 2
]T
. This is equivalent to minimizing the quadratic function

f(x, y) = x2 + 2y2 − x− 8y; check that your function from Problem 1 gets the same solution.

More generally, you can generate a random positive de�nite matrix Q for testing by setting

setting Q = ATA for any A of full rank. Note, for values of n ≤ 5 this method is not stable

enough to always converge in exaclty n iterations. Try using the code given below to test your

function for values of n < 5.

>>> import numpy as np

>>> from scipy import linalg as la

Generate Q, b, and the initial guess x0.

>>> n = 4

>>> A = np.random.random((n,n))

>>> Q = A.T @ A

>>> b, x0 = np.random.random((2,n))

>>> x = la.solve(Q, b) # Use your function here.

>>> np.allclose(Q @ x, b)

True

5

Non-linear Conjugate Gradient

The algorithm presented above is only valid for certain linear systems and quadratic functions, but

the basic strategy may be adapted to minimize more general convex or non-linear functions. Though

the non-linear version does not have guaranteed convergence as the linear formulation does, it can

still converge in less iterations than the method of steepest descent. Modifying the algorithm for

more general functions requires new formulas for αk, rk, and βk.

� The scalar αk is simply the result of performing a line-search in the given direction dk and is

thus de�ned αk = argmin
α

f(xk + αdk).

� The vector rk in the original algorithm was really just the gradient of the objective function,

so now de�ne rk = Df(xk)
T.

� The constants βk can be de�ned in various ways, and the most correct choice depends on the

nature of the objective function. A well-known formula, attributed to Fletcher and Reeves, is

βk = Df(xk)Df(xk)
T/Df(xk−1)Df(xk−1)

T.

Algorithm 12.2

1: procedure Non-Linear Conjugate Gradient(f , Df , x0, tol, maxiter)

2: r0 ← −Df(x0)
T

3: d0 ← r0
4: α0 ← argmin

α
f(x0 + αd0)

5: x1 ← x0 + α0d0

6: k ← 1

7: while ‖rk‖ ≥ tol, k < maxiter do

8: rk ← −Df(xk)T
9: βk = rTkrk/r

T
k−1rk−1

10: dk ← rk + βkdk−1.

11: αk ← argmin
α

f(xk + αdk).

12: xk+1 ← xk + αkdk.

13: k ← k + 1.

Problem 3. Write a function that accepts a convex objective function f , its derivative Df ,

an initial guess x0, a convergence tolerance defaultin to 1e−5, and a maximum number of

iterations defaultin to 100. Use Algorithm 12.2 to compute the minimizer x∗ of f . Return the

approximate minimizer, whether or not the algorithm converged, and the number of iterations

computed.

Compare your function to SciPy's opt.fmin_cg().

>>> opt.fmin_cg(opt.rosen, np.array([10, 10]), fprime=opt.rosen_der)

Optimization terminated successfully.

6 Lab 12. Gradient Descent Methods

Current function value: 0.000000

Iterations: 44

Function evaluations: 102 # Much faster than steepest descent!

Gradient evaluations: 102

array([1.00000007, 1.00000015])

Regression Problems

A major use of the conjugate gradient method is solving linear least squares problems. Recall that

a least squares problem can be formulated as an optimization problem:

x∗ = min
x
‖Ax− b‖2,

where A is an m × n matrix with full column rank, x ∈ Rn, and b ∈ Rm. The solution can be

calculated analytically, and is given by

x∗ = (ATA)−1ATb.

In other words, the minimizer solves the linear system

ATAx = ATb. (12.3)

Since A has full column rank, it is invertible, ATA is positive de�nite, and for any non-zero vector

z, Az 6= 0. Therefore, zTATAz = ‖Az‖2 > 0. As ATA is positive de�nite, conjugate gradient can be

used to solve Equation 12.3.

Linear least squares is the mathematical underpinning of linear regression. Linear regression

involves a set of real-valued data points {y1, . . . , ym}, where each yi is paired with a corresponding

set of predictor variables {xi,1, xi,2, . . . , xi,n} with n < m. The linear regression model posits that

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βnxi,n + εi

for i = 1, 2, . . . ,m. The real numbers β0, . . . , βn are known as the parameters of the model, and the

εi are independent, normally-distributed error terms. The goal of linear regression is to calculate

the parameters that best �t the data. This can be accomplished by posing the problem in terms of

linear least squares. De�ne

b =

 y1
...

ym

 , A =


1 x1,1 x1,2 · · · x1,n
1 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

1 xm,1 xm,2 · · · xm,n

 , x =


β0
β1
...

βn

 .

The solution x∗ = [β∗0 , β
∗
1 , . . . , β

∗
n]

T to the system ATAx = ATb gives the parameters that best �t

the data. These values can be understood as de�ning the hyperplane that best �ts the data.

7

0 2 4 6 8 10
x

0

5

10

15

20

25

y

Linear Regression

Figure 12.3: Solving the linear regression problem results in a best-�t hyperplane.

Problem 4. Using your function from Problem 2, solve the linear regression problem speci�ed

by the data contained in the �lea linregression.txt. This is a whitespace-delimited text �le

formatted so that the i-th row consists of yi, xi,1, . . . , xi,n. Use np.loadtxt() to load in the

data and return the solution to the normal equations.

aSource: Statistical Reference Datasets website at http://www.itl.nist.gov/div898/strd/lls/data/LINKS/

v-Longley.shtml.

Logistic Regression

Logistic regression is another important technique in statistical analysis and machine learning that

builds o� of the concepts of linear regression. As in linear regression, there is a set of predictor

variables {xi,1, xi,2, . . . , xi,n}mi=1 with corresponding outcome variables {yi}mi=1. In logistic regression,

the outcome variables yi are binary and can be modeled by a sigmoidal relationship. The value of

the predicted yi can be thought of as the probability that yi = 1. In mathematical terms,

P(yi = 1 |xi,1, . . . , xi,n) = pi,

where

pi =
1

1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n))
.

The parameters of the model are the real numbers β0, β1, . . . , βn. Note that pi ∈ (0, 1) regardless of

the values of the predictor variables and parameters.

The probability of observing the outcome variables yi under this model, assuming they are

independent, is given by the likelihood function L : Rn+1 → R

L(β0, . . . , βn) =
m∏
i=1

pyii (1− pi)1−yi .

http://www.itl.nist.gov/div898/strd/lls/data/LINKS/v-Longley.shtml
http://www.itl.nist.gov/div898/strd/lls/data/LINKS/v-Longley.shtml

8 Lab 12. Gradient Descent Methods

The goal of logistic regression is to �nd the parameters β0, . . . , βk that maximize this likelihood

function. Thus, the problem can be written as:

max
(β0,...,βn)

L(β0, . . . , βn).

Maximizing this function is often a numerically unstable calculation. Thus, to make the objec-

tive function more suitable, the logarithm of the objective function may be maximized because the

logarithmic function is strictly monotone increasing. Taking the log and turning the problem into a

minimization problem, the �nal problem is formulated as:

min
(β0,...,βn)

− logL(β0, . . . , βn).

A few lines of calculation reveal that this objective function can also be rewritten as

− logL(β0, . . . , βn) =
m∑
i=1

log(1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n)))+

m∑
i=1

(1− yi)(β0 + β1xi,1 + · · ·+ βnxi,n).

The values for the parameters {βi}ni=1 that we obtain are known as the maximum likelihood

estimate (MLE). To �nd the MLE, conjugate gradient can be used to minimize the objective function.

For a one-dimensional binary logistic regression problem, we have predictor data {xi}mi=1 with

labels {yi}mi=1 where each yi ∈ {0, 1}. The negative log likelihood then becomes the following.

− logL(β0, β1) =
m∑
i=1

log(1 + e−(β0+β1xi)) + (1− yi)(β0 + β1xi) (12.4)

Problem 5. Write a class for doing binary logistic regression in one dimension that implement

the following methods.

1. fit(): accept an array x ∈ Rn of data, an array y ∈ Rn of labels (0s and 1s), and an

initial guess β0 ∈ R2. De�ne the negative log likelihood function as given in (12.4), then

minimize it (with respect to β) with your function from Problem 3 or opt.fmin_cg().

Store the resulting parameters β0 and β1 as attributes.

2. predict(): accept a �oat x ∈ R and calculate

σ(x) =
1

1 + exp(−(β0 + β1x))
,

where β0 and β1 are the optimal values calculated in fit(). The value σ(x) is the

probability that the observation x should be assigned the label y = 1.

This class does not need an explicit constructor. You may assume that predict() will be called

after fit().

9

Problem 6. On January 28, 1986, less than two minutes into the Challenger space shuttle's

10th mission, there was a large explosion that originated from the spacecraft, killing all seven

crew members and destroying the shuttle. The investigation that followed concluded that the

malfunction was caused by damage to O-rings that are used as seals for parts of the rocket

engines. There were 24 space shuttle missions before this disaster, some of which had noted

some O-ring damage. Given the data, could this disaster have been predicted?

The �le challenger.npy contains data for 23 missions (during one of the 24 missions, the

engine was lost at sea). The �rst column (x) contains the ambient temperature, in Fahrenheit,

of the shuttle launch. The second column (y) contains a binary indicator of the presence of

O-ring damage (1 if O-ring damage was present, 0 otherwise).

Instantiate your class from Problem 5 and �t it to the data, using an initial guess of

β0 = [20,−1]T. Plot the resulting curve σ(x) for x ∈ [30, 100], along with the raw data. Return

the predicted probability (according to this model) of O-ring damage on the day the shuttle

was launched, given that it was 31◦F.

30 40 50 60 70 80 90
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

O-
Ri

ng
 D

am
ag

e

Probability of O-Ring Damage

Previous Damage
P(Damage) at Launch

	Gradient Descent Methods

