
13 The Simplex Method

Lab Objective: The Simplex Method is a straightforward algorithm for �nding optimal solutions

to optimization problems with linear constraints and cost functions. Because of its simplicity and

applicability, this algorithm has been named one of the most important algorithms invented within

the last 100 years. In this lab we implement a standard Simplex solver for the primal problem.

Standard Form

The Simplex Algorithm accepts a linear constrained optimization problem, also called a linear pro-

gram, in the form given below:

minimize cTx

subject to Ax � b

x � 0

Note that any linear program can be converted to standard form, so there is no loss of generality

in restricting our attention to this particular formulation.

Such an optimization problem de�nes a region in space called the feasible region, the set of

points satisfying the constraints. Because the constraints are all linear, the feasible region forms

a geometric object called a polytope, having �at faces and edges (see Figure 13.1). The Simplex

Algorithm jumps among the vertices of the feasible region searching for an optimal point. It does

this by moving along the edges of the feasible region in such a way that the objective function is

always increased after each move.

1

2 Lab 13. The Simplex Method

1 0 1 2 3 4 5
1

0

1

2

3

4

5

(a) The feasible region for a linear program with

2-dimensional constraints.

x∗

(b) The feasible region for a linear program with

3-dimensional constraints.

Figure 13.1: If an optimal point exists, it is one of the vertices of the polyhedron. The simplex

algorithm searches for optimal points by moving between adjacent vertices in a direction that increases

the value of the objective function until it �nds an optimal vertex.

Implementing the Simplex Algorithm is straightforward, provided one carefully follows the

procedure. We will break the algorithm into several small steps, and write a function to perform

each one. To become familiar with the execution of the Simplex algorithm, it is helpful to work

several examples by hand.

The Simplex Solver
Our program will be more lengthy than many other lab exercises and will consist of a collection of

functions working together to produce a �nal result. It is important to clearly de�ne the task of each

function and how all the functions will work together. If this program is written haphazardly, it will

be much longer and more di�cult to read than it needs to be. We will walk you through the steps

of implementing the Simplex Algorithm as a Python class.

For demonstration purposes, we will use the following linear program.

minimize − 3x0 − 2x1

subject to x0 − x1 ≤ 2

3x0 + x1 ≤ 5

4x0 + 3x1 ≤ 7

x0, x1 ≥ 0.

Accepting a Linear Program

Our �rst task is to determine if we can even use the Simplex algorithm. Assuming that the problem

is presented to us in standard form, we need to check that the feasible region includes the origin. For

now, we only check for feasibility at the origin. A more robust solver sets up the auxiliary problem

and solves it to �nd a starting point if the origin is infeasible.

3

Problem 1. Write a class that accepts the arrays c, A, and b of a linear optimization problem

in standard form. In the constructor, check that the system is feasible at the origin. That is,

check that Ax � b when x = 0. Raise a ValueError if the problem is not feasible at the origin.

Adding Slack Variables

The next step is to convert the inequality constraints Ax � b into equality constraints by introducing

a slack variable for each constraint equation. If the constraint matrix A is an m × n matrix, then

there are m slack variables, one for each row of A. Grouping all of the slack variables into a vector

w of length m, the constraints now take the form Ax + w = b. In our example, we have

w =

 x2

x3

x4

When adding slack variables, it is useful to represent all of your variables, both the original

primal variables and the additional slack variables, in a convenient manner. One e�ective way is to

refer to a variable by its subscript. For example, we can use the integers 0 through n− 1 to refer to

the original (non-slack) variables x0 through xn−1, and we can use the integers n through n+m− 1

to track the slack variables (where the slack variable corresponding to the ith row of the constraint

matrix is represented by the index n + i− 1).

We also need some way to track which variables are independent (non-zero) and which variables

are dependent (those that have value 0). This can be done using the objective function. At anytime

during the optimization process, the non-zero variables in the objective function are independent and

all other variables are dependent.

Creating a Dictionary

After we have determined that our program is feasible, we need to create the dictionary (sometimes

called the tableau), a matrix to track the state of the algorithm.

There are many di�erent ways to build your dictionary. We will do this by setting the corre-

sponding dependent variable equations to 0. For example, if x5 were a dependent variable we would

expect to see a -1 in the column that represents x5. De�ne

Ā =
[
A Im

]
,

where Im is the m×m identity matrix we will use to represent our slack variables, and de�ne

c̄ =

[
c

0

]
.

That is, c̄ ∈ Rn+m such that the �rst n entries are c and the �nal m entries are zeros. Then the

initial dictionary has the form

D =

[
0 c̄T

b −Ā

]
(13.1)

The columns of the dictionary correspond to each of the variables (both primal and slack), and

the rows of the dictionary correspond to the dependent variables.

4 Lab 13. The Simplex Method

For our example the initial dictionary is

D =

0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

 .

The advantage of using this kind of dictionary is that it is easy to check the progress of your

algorithm by hand.

Problem 2. Add a method to your Simplex solver that takes in arrays c, A, and b to create

the initial dictionary (D) as a NumPy array.

Pivoting

Pivoting is the mechanism that really makes Simplex useful. Pivoting refers to the act of swapping

dependent and independent variables, and transforming the dictionary appropriately. This has the

e�ect of moving from one vertex of the feasible polytope to another vertex in a way that increases

the value of the objective function. Depending on how you store your variables, you may need to

modify a few di�erent parts of your solver to re�ect this swapping.

When initiating a pivot, you need to determine which variables will be swapped. In the dictio-

nary representation, you �rst �nd a speci�c element on which to pivot, and the row and column that

contain the pivot element correspond to the variables that need to be swapped. Row operations are

then performed on the dictionary so that the pivot column becomes a negative elementary vector.

Let's break it down, starting with the pivot selection. We need to use some care when choosing

the pivot element. To �nd the pivot column, search from left to right along the top row of the

dictionary (ignoring the �rst column), and stop once you encounter the �rst negative value. The

index corresponding to this column will be designated the entering index, since after the full pivot

operation, it will enter the basis and become a dependent variable.

Using our initial dictionary D in the example, we stop at the second column:

D =

0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

We now know that our pivot element will be found in the second column. The entering index is thus

1.

Next, we select the pivot element from among the negative entries in the pivot column (ignor-

ing the entry in the �rst row). If all entries in the pivot column are non-negative, the problem is

unbounded and has no solution. In this case, the algorithm should terminate. Otherwise, assuming

our pivot column is the jth column of the dictionary and that the negative entries of this column are

Di1,j , Di2,j , . . . , Dik,j , we calculate the ratios

−Di1,0

Di1,j
,
−Di2,0

Di2,j
, . . . ,

−Dik,0

Dik,j
,

and we choose our pivot element to be one that minimizes this ratio. If multiple entries minimize the

ratio, then we utilize Bland's Rule, which instructs us to choose the entry in the row corresponding

5

to the smallest index (obeying this rule is important, as it prevents the possibility of the algorithm

cycling back on itself in�nitely). The index corresponding to the pivot row is designated as the

leaving index, since after the full pivot operation, it will leave the basis and become a independent

variable.

In our example, we see that all entries in the pivot column (ignoring the entry in the �rst row,

of course) are negative, and hence they are all potential choices for the pivot element. We then

calculate the ratios, and obtain

−2

−1
= 2,

−5

−3
= 1.66...,

−7

−4
= 1.75.

We see that the entry in the third row minimizes these ratios. Hence, the element in the second

column (index 1), third row (index 2) is our designated pivot element.

D =

0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

Problem 3. Write a method that will determine the pivot row and pivot column according to

Bland's Rule.

De�nition 13.1 (Bland's Rule). Choose the independent variable with the smallest index

that has a negative coe�cient in the objective function as the leaving variable. Choose the

dependent variable with the smallest index among all the binding dependent variables.

Bland's Rule is important in avoiding cycles when performing pivots. This rule guarantees

that a feasible Simplex problem will terminate in a �nite number of pivots. Hint: Avoid dividing

by zero.

Finally, we perform row operations on our dictionary in the following way: divide the pivot row

by the negative value of the pivot entry. Then use the pivot row to zero out all entries in the pivot

column above and below the pivot entry. In our example, we �rst divide the pivot row by -3, and

then zero out the two entries above the pivot element and the single entry below it:
0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

→

0 −3 −2 0 0 0

2 −1 1 −1 0 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

2 −1 1 −1 0 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

1/3 0 −4/3 1 −1/3 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

1/3 0 4/3 −1 1/3 0

5/3 −1 −1/3 0 −1/3 0

1/3 0 −5/3 0 4/3 −1

 .

The result of these row operations is our updated dictionary, and the pivot operation is complete.

6 Lab 13. The Simplex Method

Problem 4. Add a method to your solver that checks for unboundedness and performs a single

pivot operation from start to completion. If the problem is unbounded, raise a ValueError.

Termination and Reading the Dictionary

Up to this point, our algorithm accepts a linear program, adds slack variables, and creates the initial

dictionary. After carrying out these initial steps, it then performs the pivoting operation iteratively

until the optimal point is found. But how do we determine when the optimal point is found? The

answer is to look at the top row of the dictionary, which represents the objective function. More

speci�cally, before each pivoting operation, check whether all of the entries in the top row of the

dictionary (ignoring the entry in the �rst column) are nonnegative. If this is the case, then we have

found an optimal solution, and so we terminate the algorithm.

The �nal step is to report the solution. The ending state of the dictionary and index list tells

us everything we need to know. The minimal value attained by the objective function is found in the

upper leftmost entry of the dictionary. The dependent variables all have the value 0 in the objective

function or �rst row of our dictionary array. The independent variables have values given by the

�rst column of the dictionary. Speci�cally, the independent variable whose index is located at the

ith entry of the index list has the value Ti+1,0.

In our example, suppose that our algorithm terminates with the dictionary and index list in

the following state:

D =

−5.2 0 0 0 0.2 0.6

0.6 0 0 −1 1.4 −0.8

1.6 −1 0 0 −0.6 0.2

0.2 0 −1 0 0.8 −0.6

Then the minimal value of the objective function is −5.2. The independent variables have indices

4, 5 and have the value 0. The dependent variables have indices 3, 1, and 2, and have values .6, 1.6,

and .2, respectively. In the notation of the original problem statement, the solution is given by

x0 = 1.6

x1 = .2.

Problem 5. Write an additional method in your solver called solve() that obtains the op-

timal solution, then returns the minimal value, the dependent variables, and the independent

variables. The dependent and independent variables should be represented as two dictionaries

that map the index of the variable to its corresponding value.

For our example, we would return the tuple

(-5.2, {0: 1.6, 1: .2, 2: .6}, {3: 0, 4: 0}).

At this point, you should have a Simplex solver that is ready to use. The following code

demonstrates how your solver is expected to behave:

7

>>> import SimplexSolver

Initialize objective function and constraints.

>>> c = np.array([-3., -2.])

>>> b = np.array([2., 5, 7])

>>> A = np.array([[1., -1], [3, 1], [4, 3]])

Instantiate the simplex solver, then solve the problem.

>>> solver = SimplexSolver(c, A, b)

>>> sol = solver.solve()

>>> print(sol)

(-5.2,

{0: 1.6, 1: 0.2, 2: 0.6},

{3: 0, 4: 0})

If the linear program were infeasible at the origin or unbounded, we would expect the solver to

alert the user by raising an error.

Note that this simplex solver is not fully operational. It can't handle the case of infeasibility

at the origin. This can be �xed by adding methods to your class that solve the auxiliary problem,

that of �nding an initial feasible dictionary when the problem is not feasible at the origin. Solving

the auxiliary problem involves pivoting operations identical to those you have already implemented,

so adding this functionality is not overly di�cult.

The Product Mix Problem
We now use our Simplex implementation to solve the product mix problem, which in its dependent

form can be expressed as a simple linear program. Suppose that a manufacturer makes n products

using m di�erent resources (labor, raw materials, machine time available, etc). The ith product is

sold at a unit price pi, and there are at mostmj units of the jth resource available. Additionally, each

unit of the ith product requires aj,i units of resource j. Given that the demand for product i is di
units per a certain time period, how do we choose the optimal amount of each product to manufacture

in that time period so as to maximize revenue, while not exceeding the available resources?

Let x1, x2, . . . , xn denote the amount of each product to be manufactured. The sale of product

i brings revenue in the amount of pixi. Therefore our objective function, the pro�t, is given by

n∑
i=1

pixi.

Additionally, the manufacture of product i requires aj,ixi units of resource j. Thus we have the

resource constraints
n∑

i=1

aj,ixi ≤ mj for j = 1, 2, . . . ,m.

Finally, we have the demand constraints which tell us not to exceed the demand for the products:

xi ≤ di for i = 1, 2, . . . , n

The variables xi are constrained to be nonnegative, of course. We therefore have a linear

program in the appropriate form that is feasible at the origin. It is a simple task to solve the problem

using our Simplex solver.

8 Lab 13. The Simplex Method

Problem 6. Solve the product mix problem for the data contained in the �le productMix.npz.

In this problem, there are 4 products and 3 resources. The archive �le, which you can load

using the function np.load, contains a dictionary of arrays. The array with key 'A' gives the

resource coe�cients ai,j (i.e. the (i, j)-th entry of the array give ai,j). The array with key 'p'

gives the unit prices pi. The array with key 'm' gives the available resource units mj . The

array with key 'd' gives the demand constraints di.

Return a 1-d numpy array of the number of units that should be produced for each product.

(For productMix.npz, the function should return an array of length four). Hint: Because this

is a maximization problem and your solver works with minimizations, you will need to change

the sign of the array c.

Beyond Simplex
The Computing in Science and Engineering journal listed Simplex as one of the top ten algorithms

of the twentieth century [Nas00]. However, like any other algorithm, Simplex has its drawbacks.

In 1972, Victor Klee and George Minty Cube published a paper with several examples of worst-

case polytopes for the Simplex algorithm [KM72]. In their paper, they give several examples of

polytopes that the Simplex algorithm struggles to solve.

Consider the following linear program from Klee and Minty.

max 2n−1x1 +2n−2x2 + · · · +2xn−1 +xn

subject to x1 ≤ 5

4x1 +x2 ≤ 25

8x1 +4x2 +x3 ≤ 125

...
...

2nx1 +2n−1x2 + · · · +4xn−1 +xn ≤ 5

Klee and Minty show that for this example, the worst case scenario has exponential time com-

plexity. With only n constraints and n variables, the simplex algorithm goes through 2n iterations.

This is because there are 2n extreme points, and when starting at the point x = 0, the simplex

algorithm goes through all of the extreme points before reaching the optimal point (0, 0, . . . , 0, 5n).

Other algorithms, such as interior point methods, solve this problem much faster because they are

not constrained to follow the edges.

Bibliography

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In Inequalities,

volume 3, pages 159�175. Academic Press, 1972. [8]

[Nas00] J.C. Nash. The (dantzig) simplex method for linear programming. Computing in Science

and Engineering, 2(1):29�31, 2000. [8]

9

	The Simplex Method
	Bibliography

