
16 Interior Point 1: Linear
Programs

Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive

method for linear programming. The past 30 years, however, have seen the discovery and widespread

adoption of a new family of algorithms that rival�and in some cases outperform�the Simplex algo-

rithm, collectively called Interior Point methods. One of the major shortcomings of the Simplex

algorithm is that the number of steps required to solve the problem can grow exponentially with the

size of the linear system. Thus, for certain large linear programs, the Simplex algorithm is simply

not viable. Interior Point methods o�er an alternative approach and enjoy much better theoretical

convergence properties. In this lab we implement an Interior Point method for linear programs, and

in the next lab we will turn to the problem of solving quadratic programs.

Introduction

Recall that a linear program is a constrained optimization problem with a linear objective function

and linear constraints. The linear constraints de�ne a set of allowable points called the feasible

region, the boundary of which forms a geometric object known as a polytope. The theory of convex

optimization ensures that the optimal point for the objective function can be found among the

vertices of the feasible polytope. The Simplex Method tests a sequence of such vertices until it �nds

the optimal point. Provided the linear program is neither unbounded nor infeasible, the algorithm

is certain to produce the correct answer after a �nite number of steps, but it does not guarantee an

e�cient path along the polytope toward the minimizer. Interior point methods do away with the

feasible polytope and instead generate a sequence of points that cut through the interior (or exterior)

of the feasible region and converge iteratively to the optimal point. Although it is computationally

more expensive to compute such interior points, each step results in signi�cant progress toward

the minimizer. See Figure 16.1 for an example of a path using an Interior Point algorithm. In

general, the Simplex Method requires many more iterations (though each iteration is less expensive

computationally).

1

2 Lab 16. Interior Point 1: Linear Programs

0 1 2 3 4 5 6
0

1

2

3

4

5

6

starting point

optimal point

Feasible Region

Figure 16.1: A path traced by an Interior Point algorithm.

Primal-Dual Interior Point Methods
Some of the most popular and successful types of Interior Point methods are known as Primal-Dual

Interior Point methods. Consider the following linear program:

minimize cTx

subject to Ax = b

x � 0.

Here, x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n with full row rank. This is the primal problem, and its

dual takes the form:

maximize bTλ

subject to ATλ+ µ = c

µ,λ � 0,

where λ ∈ Rm and µ ∈ Rn.

KKT Conditions

The theory of convex optimization gives us necessary and su�cient conditions for the solutions to

the primal and dual problems via the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian for

the primal problem is as follows:

L(x,λ,µ) = cTx+ λT(b−Ax)− µTx

3

The KKT conditions are

ATλ+ µ = c

Ax = b

xiµi = 0, i = 1, 2, . . . , n,

x,µ � 0.

It is convenient to write these conditions in a more compact manner, by de�ning an almost-linear

function F and setting it equal to zero:

F (x,λ,µ) :=

ATλ+ µ− c

Ax− b

Mx

 = 0,

(x,µ � 0),

whereM = diag(µ1, µ2, . . . , µn). Note that the �rst row of F is the KKT condition for dual feasibility,

the second row of F is the KKT condition for the primal problem, and the last row of F accounts

for complementary slackness.

Problem 1. De�ne a function interiorPoint() that will be used to solve the complete in-

terior point problem. This function should accept A, b, and c as parameters, along with the

keyword arguments niter=20 and tol=1e-16. The keyword arguments will be used in a later

problem.

In the next few problems, you will be writing functions within this function to solve the

interior point problem one step at a time.

For this problem, within the interiorPoint() function, write a function for the vector-

valued function F described above. This function should accept x, λ, and µ as parameters and

return a 1-dimensional NumPy array with 2n+m entries.

Search Direction

A Primal-Dual Interior Point method is a line search method that starts with an initial guess

(xT
0 ,λ

T
0 ,µ

T
0) and produces a sequence of points that converge to (x∗T,λ∗T,µ∗T), the solution to

the KKT equations and hence the solution to the original linear program. The constraints on the

problem make �nding a search direction and step length a little more complicated than for the

unconstrained line search we have studied previously.

In the spirit of Newton's Method, we can form a linear approximation of the system F (x,λ,µ) =

0 centered around our current point (x,λ,µ), and calculate the direction (4xT,4λT,4µT) in which

to step to set the linear approximation equal to 0. This equates to solving the linear system:

DF (x,λ,µ)

4x

4λ

4µ

 = −F (x,λ,µ) (16.1)

Here DF (x,λ,µ) denotes the total derivative matrix of F . We can calculate this matrix block-wise

by obtaining the partial derivatives of each block entry of F (x,λ,µ) with respect to x, λ, and µ,

4 Lab 16. Interior Point 1: Linear Programs

respectively. We thus obtain:

DF (x,λ,µ) =

 0 AT I

A 0 0

M 0 X


where X = diag(x1, x2, . . . , xn).

Unfortunately, solving Equation 16.1 often leads to a search direction that is too greedy. Even

small steps in this direction may lead the iteration out of the feasible region by violating one of the

constraints. To remedy this, we de�ne the duality measure ν1 of the problem:

ν =
xTµ

n

The idea is to use Newton's method to identify a direction that strictly decreases ν. Thus instead of

solving Equation 16.1, we solve:

DF (x,λ,µ)

4x

4λ

4µ

 = −F (x,λ,µ) +

 0

0

σνe

 (16.2)

where e = (1, 1, . . . , 1)T and σ ∈ [0, 1) is called the centering parameter. The closer σ is to 0, the

more similar the resulting direction will be to the plain Newton direction. The closer σ is to 1, the

more the direction points inward to the interior of the of the feasible region.

Problem 2. Within interiorPoint(), write a subroutine to compute the search direction

(4xT,4λT,4µT) by solving Equation 16.2. Use σ = 1
10 for the centering parameter.

Note that only the last block row of DF will need to be changed at each iteration (since

M and X depend on µ and x, respectively). Use the functions lu_factor() and lu_solve()

from the scipy.linalg module to solving the system of equations e�ciently.

Step Length

Now that we have our search direction, it remains to choose our step length. We wish to step nearly

as far as possible without violating the problem's constraints, thus remaining in the interior of the

feasible region. First, we calculate the maximum allowable step lengths for x and µ, respectively:

αmax = min{−µi/4µi | 4µi < 0}
δmax = min{−xi/4xi | 4xi < 0}

If all values of 4µ are nonnegative, let αmax = 1. Likewise, if all values of 4x are nonnegative, let

δmax = 1. Next, we back o� from these maximum step lengths slightly:

α = min(1, 0.95αmax)

δ = min(1, 0.95δmax).

These are our �nal step lengths. Thus, the next point in the iteration is given by:

xk+1 = xk + δ4xk

(λk+1,µk+1) = (λk,µk) + α(4λk,4µk).

1ν is the Greek letter for n, pronounced �nu.�

5

Problem 3. Within interiorPoint(), write a subroutine to compute the step size after the

search direction has been computed. Avoid using loops when computing αmax and δmax (use

masking and NumPy functions instead).

Initial Point

Finally, the choice of initial point (x0,λ0,µ0) is an important, nontrivial one. A naïvely or randomly

chosen initial point may cause the algorithm to fail to converge. The following function will calculate

an appropriate initial point.

def starting_point(A, b, c):

"""Calculate an initial guess to the solution of the linear program

min c\trp x, Ax = b, x>=0.

Reference: Nocedal and Wright, p. 410.

"""

Calculate x, lam, mu of minimal norm satisfying both

the primal and dual constraints.

B = la.inv(A @ A.T))

x = A.T @ B @ b

lam = B @ A @ c

mu = c - (A.T @ lam)

Perturb x and s so they are nonnegative.

dx = max((-3./2)*x.min(), 0)

dmu = max((-3./2)*mu.min(), 0)

x += dx*np.ones_like(x)

mu += dmu*np.ones_like(mu)

Perturb x and mu so they are not too small and not too dissimilar.

dx = .5*(x*mu).sum()/mu.sum()

dmu = .5*(x*mu).sum()/x.sum()

x += dx*np.ones_like(x)

mu += dmu*np.ones_like(mu)

return x, lam, mu

Problem 4. Complete the implementation of interiorPoint().

Use the function starting_point() provided above to select an initial point, then run

the iteration niter times, or until the duality measure is less than tol. Return the optimal

point x∗ and the optimal value cTx∗.

The duality measure ν tells us in some sense how close our current point is to the mini-

mizer. The closer ν is to 0, the closer we are to the optimal point. Thus, by printing the value

of ν at each iteration, you can track how your algorithm is progressing and detect when you

have converged.

6 Lab 16. Interior Point 1: Linear Programs

To test your implementation, use the following code to generate a random linear program,

along with the optimal solution.

def randomLP(j, k):

"""Generate a linear program min c\trp x s.t. Ax = b, x>=0.

First generate m feasible constraints, then add

slack variables to convert it into the above form.

Inputs:

j (int >= k): number of desired constraints.

k (int): dimension of space in which to optimize.

Outputs:

A ((j, j+k) ndarray): Constraint matrix.

b ((j,) ndarray): Constraint vector.

c ((j+k,), ndarray): Objective function with j trailing 0s.

x ((k,) ndarray): The first 'k' terms of the solution to the LP.

"""

A = np.random.random((j,k))*20 - 10

A[A[:,-1]<0] *= -1

x = np.random.random(k)*10

b = np.zeros(j)

b[:k] = A[:k,:] @ x

b[k:] = A[k:,:] @ x + np.random.random(j-k)*10

c = np.zeros(j+k)

c[:k] = A[:k,:].sum(axis=0)/k

A = np.hstack((A, np.eye(j)))

return A, b, -c, x

>>> j, k = 7, 5

>>> A, b, c, x = randomLP(j, k)

>>> point, value = interiorPoint(A, b, c)

>>> np.allclose(x, point[:k])

True

Least Absolute Deviations (LAD)
We now return to the familiar problem of �tting a line (or hyperplane) to a set of data. We have

previously approached this problem by minimizing the sum of the squares of the errors between the

data points and the line, an approach known as least squares. The least squares solution can be

obtained analytically when �tting a linear function, or through a number of optimization methods

(such as Conjugate Gradient) when �tting a nonlinear function.

The method of least absolute deviations (LAD) also seeks to �nd a best �t line to a set of data,

but the error between the data and the line is measured di�erently. In particular, suppose we have a

set of data points (y1,x1), (y2,x2), . . . , (ym,xm), where yi ∈ R, xi ∈ Rn for i = 1, 2, . . . ,m. Here, the

xi vectors are the explanatory variables and the yi values are the response variables, and we assume

the following linear model:

yi = βTxi + b, i = 1, 2, . . . ,m,

7

0 2 4 6 8 10
0

10

20

30
Least Absolute Deviation

0 2 4 6 8 10
0

10

20

30
Least Squares

Figure 16.2: Fitted lines produced by least absolute deviations (top) and least squares (bottom).

The presence of an outlier accounts for the stark di�erence between the two lines.

where β ∈ Rn and b ∈ R. The error between the data and the proposed linear model is given by

n∑
i=1

|βTxi + b− yi|,

and we seek to choose the parameters β, b so as to minimize this error.

Advantages of LAD

The most prominent di�erence between this approach and least squares is how they respond to

outliers in the data. Least absolute deviations is robust in the presence of outliers, meaning that one

(or a few) errant data points won't severely a�ect the �tted line. Indeed, in most cases, the best �t

line is guaranteed to pass through at least two of the data points. This is a desirable property when

the outliers may be ignored (perhaps because they are due to measurement error or corrupted data).

Least squares, on the other hand, is much more sensitive to outliers, and so is the better choice when

outliers cannot be dismissed. See Figure 16.2.

While least absolute deviations is robust with respect to outliers, small horizontal perturbations

of the data points can lead to very di�erent �tted lines. Hence, the least absolute deviations solution

is less stable than the least squares solution. In some cases there are even in�nitely many lines that

minimize the least absolute deviations error term. However, one can expect a unique solution in

most cases.

The least absolute deviations solution arises naturally when we assume that the residual terms

βTxi+b−yi have a particular statistical distribution (the Laplace distribution). Ultimately, however,

the choice between least absolute deviations and least squares depends on the nature of the data at

hand, as well as your own good judgment.

8 Lab 16. Interior Point 1: Linear Programs

LAD as a Linear Program

We can formulate the least absolute deviations problem as a linear program, and then solve it using

our interior point method. For i = 1, 2, . . . ,m we introduce the arti�cial variable ui to take the place

of the error term |βTxi + b − yi|, and we require this variable to satisfy ui ≥ |βTxi + b − yi|. This
constraint is not yet linear, but we can split it into an equivalent set of two linear constraints:

ui ≥ βTxi + b− yi,

ui ≥ yi − βTxi − b.

The ui are implicitly constrained to be nonnegative.

Our linear program can now be stated as follows:

minimize

m∑
i=1

ui

subject to ui ≥ βTxi + b− yi,

ui ≥ yi − βTxi − b.

Now for each inequality constraint, we bring all variables (ui,β, b) to the left hand side and introduce

a nonnegative slack variable to transform the constraint into an equality:

ui − βTxi − b− s2i−1 = −yi,

ui + βTxi + b− s2i = yi,

s2i−1, s2i ≥ 0.

Notice that the variables β, b are not assumed to be nonnegative, but in our interior point

method, all variables are assumed to be nonnegative. We can �x this situation by writing these

variables as the di�erence of nonnegative variables:

β = β1 − β2,

b = b1 − b2,
β1,β2 � 0; b1, b2 ≥ 0.

Substituting these values into our constraints, we have the following system of constraints:

ui − βT
1xi + βT

2xi − b1 + b2 − s2i−1 = −yi,

ui + βT
1xi − βT

2xi + b1 − b2 − s2i = yi,

β1,β2 � 0;ui, b1, b2, s2i−1, s2i ≥ 0.

Writing y = (−y1, y1,−y2, y2, . . . ,−ym, ym)T and βi = (βi,1, . . . , βi,n)
T for i = {1, 2}, we can aggre-

gate all of our variables into one vector as follows:

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m)T.

De�ning c = (1, 1, . . . , 1, 0, . . . , 0)T (where only the �rst m entries are equal to 1), we can write our

objective function as
m∑
i=1

ui = cTv.

9

Hence, the �nal form of our linear program is:

minimize cTv

subject to Av = y,

v � 0,

where A is a matrix containing the coe�cients of the constraints. Our constraints are now equalities,

and the variables are all nonnegative, so we are ready to use our interior point method to obtain the

solution.

LAD Example

Consider the following example. We start with an array data, each row of which consists of the

values yi, xi,1, . . . , xi,n, where xi = (xi,1, xi,2, . . . , xi,n)
T. We will have 3m+2(n+1) variables in our

linear program. Below, we initialize the vectors c and y.

>>> m = data.shape[0]

>>> n = data.shape[1] - 1

>>> c = np.zeros(3*m + 2*(n + 1))

>>> c[:m] = 1

>>> y = np.empty(2*m)

>>> y[::2] = -data[:, 0]

>>> y[1::2] = data[:, 0]

>>> x = data[:, 1:]

The hardest part is initializing the constraint matrix correctly. It has 2m rows and 3m+2(n+1)

columns. Try writing out the constraint matrix by hand for smallm,n, and make sure you understand

why the code below is correct.

>>> A = np.ones((2*m, 3*m + 2*(n + 1)))

>>> A[::2, :m] = np.eye(m)

>>> A[1::2, :m] = np.eye(m)

>>> A[::2, m:m+n] = -x

>>> A[1::2, m:m+n] = x

>>> A[::2, m+n:m+2*n] = x

>>> A[1::2, m+n:m+2*n] = -x

>>> A[::2, m+2*n] = -1

>>> A[1::2, m+2*n+1] = -1

>>> A[:, m+2*n+2:] = -np.eye(2*m, 2*m)

Now we can calculate the solution by calling our interior point function.

>>> sol = interiorPoint(A, y, c, niter=10)[0]

However, the variable sol holds the value for the vector

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m+1)
T.

We extract values of β = β1 − β2 and b = b1 − b2 with the following code:

10 Lab 16. Interior Point 1: Linear Programs

>>> beta = sol[m:m+n] - sol[m+n:m+2*n]

>>> b = sol[m+2*n] - sol[m+2*n+1]

Problem 5. The �le simdata.txt contains two columns of data. The �rst gives the values of

the response variables (yi), and the second column gives the values of the explanatory variables

(xi). Find the least absolute deviations line for this data set, and plot it together with the

data. Plot the least squares solution as well to compare the results.

>>> from scipy.stats import linregress

>>> slope, intercept = linregress(data[:,1], data[:,0])[:2]

>>> domain = np.linspace(0,10,200)

>>> plt.plot(domain, domain*slope + intercept)

	Interior Point 1: Linear Programs

