
2 Linear Systems

Lab Objective: The fundamental problem of linear algebra is solving the linear system Ax = b,

given that a solution exists. There are many approaches to solving this problem, each with di�erent

pros and cons. In this lab we implement the LU decomposition and use it to solve square linear

systems. We also introduce SciPy, together with its libraries for linear algebra and working with

sparse matrices.

Gaussian Elimination
The standard approach for solving the linear system Ax = b on paper is reducing the augmented

matrix [A | b] to row-echelon form (REF) via Gaussian elimination, then using back substitution.

The matrix is in REF when the leading non-zero term in each row is the diagonal term, so the matrix

is upper triangular.

At each step of Gaussian elimination, there are three possible operations: swapping two rows,

multiplying one row by a scalar value, or adding a scalar multiple of one row to another. Many

systems, like the one displayed below, can be reduced to REF using only the third type of operation.

First, use multiples of the �rst row to get zeros below the diagonal in the �rst column, then use a

multiple of the second row to get zeros below the diagonal in the second column. 1 1 1 1

1 4 2 3

4 7 8 9

 −→
 1 1 1 1

0 3 1 2

4 7 8 9

 −→
 1 1 1 1

0 3 1 2

0 3 4 5

 −→
 1 1 1 1

0 3 1 2

0 0 3 3

Each of these operations is equivalent to left-multiplying by a type III elementary matrix, the

identity with a single non-zero non-diagonal term. If row operation k corresponds to matrix Ek, the

following equation is E3E2E1A = U . 1 0 0

0 1 0

0 −1 1

 1 0 0

0 1 0

−4 0 1

 1 0 0

−1 1 0

0 0 1

 1 1 1 1

1 4 2 3

4 7 8 9

 =

 1 1 1 1

0 3 1 2

0 0 3 3

However, matrix multiplication is an ine�cient way to implement row reduction. Instead,

modify the matrix in place (without making a copy), changing only those entries that are a�ected

by each row operation.

1

2 Lab 2. Linear Systems

>>> import numpy as np

>>> A = np.array([[1, 1, 1, 1],

... [1, 4, 2, 3],

... [4, 7, 8, 9]], dtype=np.float)

Reduce the 0th column to zeros below the diagonal.

>>> A[1,0:] -= (A[1,0] / A[0,0]) * A[0]

>>> A[2,0:] -= (A[2,0] / A[0,0]) * A[0]

Reduce the 1st column to zeros below the diagonal.

>>> A[2,1:] -= (A[2,1] / A[1,1]) * A[1,1:]

>>> print(A)

[[1. 1. 1. 1.]

[0. 3. 1. 2.]

[0. 0. 3. 3.]]

Note that the �nal row operation modi�es only part of the third row to avoid spending the

computation time of adding 0 to 0.

If a 0 appears on the main diagonal during any part of row reduction, the approach given above

tries to divide by 0. Swapping the current row with one below it that does not have a 0 in the same

column solves this problem. This is equivalent to left-multiplying by a type II elementary matrix,

also called a permutation matrix.

Achtung!

Gaussian elimination is not always numerically stable. In other words, it is susceptible to

rounding error that may result in an incorrect �nal matrix. Suppose that, due to roundo�

error, the matrix A has a very small entry on the diagonal.

A =

[
10−15 1

−1 0

]
Though 10−15 is essentially zero, instead of swapping the �rst and second rows to put A in

REF, a computer might multiply the �rst row by 1015 and add it to the second row to eliminate

the −1. The resulting matrix is far from what it would be if the 10−15 were actually 0.[
10−15 1

−1 0

]
−→

[
10−15 1

0 1015

]
Round-o� error can propagate through many steps in a calculation. The NumPy routines

that employ row reduction use several tricks to minimize the impact of round-o� error, but

these tricks cannot �x every matrix.

3

Problem 1. Write a function that reduces an arbitrary square matrix A to REF. You may

assume that A is invertible and that a 0 will never appear on the main diagonal (so only use

type III row reductions, not type II). Avoid operating on entries that you know will be 0 before

and after a row operation. Use at most two nested loops.

Test your function with small test cases that you can check by hand. Consider using

np.random.randint() to generate a few manageable tests cases.

The LU Decomposition

The LU decomposition of a square matrix A is a factorization A = LU where U is the upper

triangular REF of A and L is the lower triangular product of the type III elementary matrices

whose inverses reduce A to U . The LU decomposition of A exists when A can be reduced to REF

using only type III elementary matrices (without any row swaps). However, the rows of A can always

be permuted in a way such that the decomposition exists. If P is a permutation matrix encoding the

appropriate row swaps, then the decomposition PA = LU always exists.

Suppose A has an LU decomposition (not requiring row swaps). Then A can be reduced

to REF with k row operations, corresponding to left-multiplying the type III elementary matrices

E1, . . . , Ek. Because there were no row swaps, each Ei is lower triangular, so each inverse E−1
i is also

lower triangular. Furthermore, since the product of lower triangular matrices is lower triangular, L

is lower triangular:

Ek . . . E2E1A = U −→ A = (Ek . . . E2E1)
−1U

= E−1
1 E−1

2 . . . E−1
k U

= LU.

Thus, L can be computed by right-multiplying the identity by the matrices used to reduce U .

However, in this special situation, each right-multiplication only changes one entry of L, matrix mul-

tiplication can be avoided altogether. The entire process, only slightly di�erent than row reduction,

is summarized below.

Algorithm 2.1

1: procedure LU Decomposition(A)

2: m,n← shape(A) . Store the dimensions of A.

3: U ← copy(A) . Make a copy of A with np.copy().

4: L← Im . The m×m identity matrix.

5: for j = 0 . . . n− 1 do

6: for i = j + 1 . . .m− 1 do

7: Li,j ← Ui,j/Uj,j

8: Ui,j: ← Ui,j: − Li,jUj,j:

9: return L,U

Problem 2. Write a function that �nds the LU decomposition of a square matrix. You may

assume that the decomposition exists and requires no row swaps.

4 Lab 2. Linear Systems

Forward and Backward Substitution

If PA = LU and Ax = b, then LUx = PAx = Pb. This system can be solved by �rst solving

Ly = Pb, then Ux = y. Since L and U are both triangular, these systems can be solved with

backward and forward substitution. We can thus compute the LU factorization of A once, then use

substitution to e�ciently solve Ax = b for various values of b.

Since the diagonal entries of L are all 1, the triangular system Ly = b has the form
1 0 0 · · · 0

l21 1 0 · · · 0

l31 l32 1 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · 1

y1
y2
y3
...

yn

 =

b1
b2
b3
...

bn

 .

Matrix multiplication yields the equations

y1 = b1, y1 = b1,

l21y1 + y2 = b2, y2 = b2 − l21y1,

...
...

k−1∑
j=1

lkjyj + yk = bk, yk = bk −
k−1∑
j=1

lkjyj . (2.1)

The triangular system Ux = y yields similar equations, but in reverse order:
u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

...
. . .

...

0 0 0 · · · unn

x1

x2

x3

...

xn

 =

y1
y2
y3
...

yn

 ,

unnxn = yn, xn =
1

unn
yn,

un−1,n−1xn−1 + un−1,nxn = yn−1, xn−1 =
1

un−1,n−1
(yn−1 − un−1,nxn) ,

...
...

n∑
j=k

ukjxj = yk, xk =
1

ukk

yk −
n∑

j=k+1

ukjxj

 . (2.2)

Problem 3. Write a function that, given A and b, solves the square linear system Ax = b.

Use the function from Problem 2 to compute L and U , then use (2.1) and (2.2) to solve for y,

then x. You may again assume that no row swaps are required (P = I in this case).

5

SciPy
SciPy [JOP+] is a powerful scienti�c computing library built upon NumPy. It includes high-level

tools for linear algebra, statistics, signal processing, integration, optimization, machine learning, and

more.

SciPy is typically imported with the convention import scipy as sp. However, SciPy is set

up in a way that requires its submodules to be imported individually.1

>>> import scipy as sp

>>> hasattr(sp, "stats") # The stats module isn't loaded yet.

False

>>> from scipy import stats # Import stats explicitly. Access it

>>> hasattr(sp, "stats") # with 'stats' or 'sp.stats'.

True

Linear Algebra

NumPy and SciPy both have a linear algebra module, each called linalg, but SciPy's module is the

larger of the two. Some of SciPy's common linalg functions are listed below.

Function Returns

det() The determinant of a square matrix.

eig() The eigenvalues and eigenvectors of a square matrix.

inv() The inverse of an invertible matrix.

norm() The norm of a vector or matrix norm of a matrix.

solve() The solution to Ax = b (the system need not be square).

This library also includes routines for computing matrix decompositions.

>>> from scipy import linalg as la

Make a random matrix and a random vector.

>>> A = np.random.random((1000,1000))

>>> b = np.random.random(1000)

Compute the LU decomposition of A, including pivots.

>>> L, P = la.lu_factor(A)

Use the LU decomposition to solve Ax = b.

>>> x = la.lu_solve((L,P), b)

Check that the solution is legitimate.

>>> np.allclose(A @ x, b)

True

1SciPy modules like linalg are really packages, which are not initialized when SciPy is imported alone.

6 Lab 2. Linear Systems

As with NumPy, SciPy's routines are all highly optimized. However, some algorithms are, by

nature, faster than others.

Problem 4. Write a function that times di�erent scipy.linalg functions for solving square

linear systems.

For various values of n, generate a random n×n matrix A and a random n-vector b using

np.random.random(). Time how long it takes to solve the system Ax = b with each of the

following approaches:

1. Invert A with la.inv() and left-multiply the inverse to b.

2. Use la.solve().

3. Use la.lu_factor() and la.lu_solve() to solve the system with the LU decomposition.

4. Use la.lu_factor() and la.lu_solve(), but only time la.lu_solve() (not the time

it takes to do the factorization with la.lu_factor()).

Plot the system size n versus the execution times. Use log scales if needed.

Achtung!

Problem 4 demonstrates that computing a matrix inverse is computationally expensive. In fact,

numerically inverting matrices is so costly that there is hardly ever a good reason to do it. Use

a speci�c solver like la.lu_solve() whenever possible instead of using la.inv().

Sparse Matrices

Large linear systems can have tens of thousands of entries. Storing the corresponding matrices in

memory can be di�cult: a 105 × 105 system requires around 40 GB to store in a NumPy array (4

bytes per entry × 1010 entries). This is well beyond the amount of RAM in a normal laptop.

In applications where systems of this size arise, it is often the case that the system is sparse,

meaning that most of the entries of the matrix are 0. SciPy's sparse module provides tools for

e�ciently constructing and manipulating 1- and 2-D sparse matrices. A sparse matrix only stores

the nonzero values and the positions of these values. For su�ciently sparse matrices, storing the

matrix as a sparse matrix may only take megabytes, rather than gigabytes.

For example, diagonal matrices are sparse. Storing an n× n diagonal matrix in the naïve way

means storing n2 values in memory. It is more e�cient to instead store the diagonal entries in a

1-D array of n values. In addition to using less storage space, this allows for much faster matrix

operations: the standard algorithm to multiply a matrix by a diagonal matrix involves n3 steps, but

most of these are multiplying by or adding 0. A smarter algorithm can accomplish the same task

much faster.

SciPy has seven sparse matrix types. Each type is optimized either for storing sparse matrices

whose nonzero entries follow certain patterns, or for performing certain computations.

7

Name Description Advantages

bsr_matrix Block Sparse Row Specialized structure.

coo_matrix Coordinate Format Conversion among sparse formats.

csc_matrix Compressed Sparse Column Column-based operations and slicing.

csr_matrix Compressed Sparse Row Row-based operations and slicing.

dia_matrix Diagonal Storage Specialized structure.

dok_matrix Dictionary of Keys Element access, incremental construction.

lil_matrix Row-based Linked List Incremental construction.

Creating Sparse Matrices

A regular, non-sparse matrix is called full or dense. Full matrices can be converted to each of the

sparse matrix formats listed above. However, it is more memory e�cient to never create the full

matrix in the �rst place. There are three main approaches for creating sparse matrices from scratch.

� Coordinate Format: When all of the nonzero values and their positions are known, create

the entire sparse matrix at once as a coo_matrix. All nonzero values are stored as a coordinate

and a value. This format also converts quickly to other sparse matrix types.

>>> from scipy import sparse

Define the rows, columns, and values separately.

>>> rows = np.array([0, 1, 0])

>>> cols = np.array([0, 1, 1])

>>> vals = np.array([3, 5, 2])

>>> A = sparse.coo_matrix((vals, (rows,cols)), shape=(3,3))

>>> print(A)

(0, 0) 3

(1, 1) 5

(0, 1) 2

The toarray() method casts the sparse matrix as a NumPy array.

>>> print(A.toarray()) # Note that this method forfeits

[[3 2 0] # all sparsity-related optimizations.

[0 5 0]

[0 0 0]]

� DOK and LIL Formats: If the matrix values and their locations are not known beforehand,

construct the matrix incrementally with a dok_matrix or a lil_matrix. Indicate the size of

the matrix, then change individual values with regular slicing syntax.

>>> B = sparse.lil_matrix((2,6))

>>> B[0,2] = 4

>>> B[1,3:] = 9

>>> print(B.toarray())

[[0. 0. 4. 0. 0. 0.]

[0. 0. 0. 9. 9. 9.]]

8 Lab 2. Linear Systems

� DIA Format: Use a dia_matrix to store matrices that have nonzero entries on only certain

diagonals. The function sparse.diags() is one convenient way to create a dia_matrix from

scratch. Additionally, every sparse matrix has a setdiags() method for modifying speci�ed

diagonals.

Use sparse.diags() to create a matrix with diagonal entries.

>>> diagonals = [[1,2],[3,4,5],[6]] # List the diagonal entries.

>>> offsets = [-1,0,3] # Specify the diagonal they go on.

>>> print(sparse.diags(diagonals, offsets, shape=(3,4)).toarray())

[[3. 0. 0. 6.]

[1. 4. 0. 0.]

[0. 2. 5. 0.]]

If all of the diagonals have the same entry, specify the entry alone.

>>> A = sparse.diags([1,3,6], offsets, shape=(3,4))

>>> print(A.toarray())

[[3. 0. 0. 6.]

[1. 3. 0. 0.]

[0. 1. 3. 0.]]

Modify a diagonal with the setdiag() method.

>>> A.setdiag([4,4,4], 0)

>>> print(A.toarray())

[[4. 0. 0. 6.]

[1. 4. 0. 0.]

[0. 1. 4. 0.]]

� BSR Format: Many sparse matrices can be formulated as block matrices, and a block matrix

can be stored e�ciently as a bsr_matrix. Use sparse.bmat() or sparse.block_diag() to

create a block matrix quickly.

Use sparse.bmat() to create a block matrix. Use 'None' for zero blocks.

>>> A = sparse.coo_matrix(np.ones((2,2)))

>>> B = sparse.coo_matrix(np.full((2,2), 2.))

>>> print(sparse.bmat([[A , None, A],

[None, B , None]], format='bsr').toarray())

[[1. 1. 0. 0. 1. 1.]

[1. 1. 0. 0. 1. 1.]

[0. 0. 2. 2. 0. 0.]

[0. 0. 2. 2. 0. 0.]]

Use sparse.block_diag() to construct a block diagonal matrix.

>>> print(sparse.block_diag((A,B)).toarray())

[[1. 1. 0. 0.]

[1. 1. 0. 0.]

[0. 0. 2. 2.]

[0. 0. 2. 2.]]

9

Note

If a sparse matrix is too large to �t in memory as an array, it can still be visualized with

Matplotlib's plt.spy(), which colors in the locations of the non-zero entries of the matrix.

>>> from matplotlib import pyplot as plt

Construct and show a matrix with 50 2x3 diagonal blocks.

>>> B = sparse.coo_matrix([[1,3,5],[7,9,11]])

>>> A = sparse.block_diag([B]*50)

>>> plt.spy(A, markersize=1)

>>> plt.show()

0 20 40 60 80 100 120 140
0

20

40

60

80

Problem 5. Let I be the n× n identity matrix, and de�ne

A =

B I

I B I

I
. . .

. . .

. . .
. . . I

I B

 , B =

−4 1

1 −4 1

1
. . .

. . .

. . .
. . . 1

1 −4

 ,

where A is n2 × n2 and each block B is n × n. The large matrix A is used in �nite di�erence

methods for solving Laplace's equation in two dimensions, ∂2u
∂x2 + ∂2u

∂y2 = 0.

Write a function that accepts an integer n and constructs and returns A as a sparse matrix.

Use plt.spy() to check that your matrix has nonzero values in the correct places.

10 Lab 2. Linear Systems

Sparse Matrix Operations

Once a sparse matrix has been constructed, it should be converted to a csr_matrix or a csc_matrix

with the matrix's tocsr() or tocsc() method. The CSR and CSC formats are optimized for row or

column operations, respectively. To choose the correct format to use, determine what direction the

matrix will be traversed.

For example, in the matrix-matrix multiplication AB, A is traversed row-wise, but B is tra-

versed column-wise. Thus A should be converted to a csr_matrix and B should be converted to a

csc_matrix.

Initialize a sparse matrix incrementally as a lil_matrix.

>>> A = sparse.lil_matrix((10000,10000))

>>> for k in range(10000):

... A[np.random.randint(0,9999), np.random.randint(0,9999)] = k

...

>>> A

<10000x10000 sparse matrix of type '<type 'numpy.float64'>'

with 9999 stored elements in LInked List format>

Convert A to CSR and CSC formats to compute the matrix product AA.

>>> Acsr = A.tocsr()

>>> Acsc = A.tocsc()

>>> Acsr.dot(Acsc)

<10000x10000 sparse matrix of type '<type 'numpy.float64'>'

with 10142 stored elements in Compressed Sparse Row format>

Beware that row-based operations on a csc_matrix are very slow, and similarly, column-based

operations on a csr_matrix are very slow.

Achtung!

Many familiar NumPy operations have analogous routines in the sparse module. These meth-

ods take advantage of the sparse structure of the matrices and are, therefore, usually signi�cantly

faster. However, SciPy's sparse matrices behave a little di�erently than NumPy arrays.

Operation numpy scipy.sparse

Component-wise Addition A + B A + B

Scalar Multiplication 2 * A 2 * A

Component-wise Multiplication A * B A.multiply(B)

Matrix Multiplication A.dot(B), A @ B A * B, A.dot(B), A @ B

Note in particular the di�erence between A * B for NumPy arrays and SciPy sparse

matrices. Do not use np.dot() to try to multiply sparse matrices, as it may treat the inputs

incorrectly. The syntax A.dot(B) is safest in most cases.

SciPy's sparse module has its own linear algebra library, scipy.sparse.linalg, designed for

operating on sparse matrices. Like other SciPy modules, it must be imported explicitly.

11

>>> from scipy.sparse import linalg as spla

Problem 6. Write a function that times regular and sparse linear system solvers.

For various values of n, generate the n2 × n2 matrix A described in Problem 5 and a

random vector b with n2 entries. Time how long it takes to solve the system Ax = b with each

of the following approaches:

1. Convert A to CSR format and use scipy.sparse.linalg.spsolve() (spla.spsolve()).

2. Convert A to a NumPy array and use scipy.linalg.solve() (la.solve()).

In each experiment, only time how long it takes to solve the system (not how long it takes to

convert A to the appropriate format).

Plot the system size n2 versus the execution times. As always, use log scales where

appropriate and use a legend to label each line.

Achtung!

Even though there are fast algorithms for solving certain sparse linear system, it is still very

computationally di�cult to invert sparse matrices. In fact, the inverse of a sparse matrix is

usually not sparse. There is rarely a good reason to invert a matrix, sparse or dense.

See http://docs.scipy.org/doc/scipy/reference/sparse.html for additional details on

SciPy's sparse module.

http://docs.scipy.org/doc/scipy/reference/sparse.html

12 Lab 2. Linear Systems

Additional Material

Improvements on the LU Decomposition

Vectorization

Algorithm 2.1 uses two loops to compute the LU decomposition. With a little vectorization, the

process can be reduced to a single loop.

Algorithm 2.2

1: procedure Fast LU Decomposition(A)

2: m,n← shape(A)

3: U ← copy(A)

4: L← Im
5: for k = 0 . . . n− 1 do

6: Lk+1:,k ← Uk+1:,k/Uk,k

7: Uk+1:,k: ← Uk+1:,k: − Lk+1:,kU
T
k,k:

8: return L,U

Note that step 7 is an outer product, not the regular dot product (xyT instead of the usual

xTy). Use np.outer() instead of np.dot() or @ to get the desired result.

Pivoting

Gaussian elimination iterates through the rows of a matrix, using the diagonal entry xk,k of the

matrix at the kth iteration to zero out all of the entries in the column below xk,k (xi,k for i ≥ k).

This diagonal entry is called the pivot. Unfortunately, Gaussian elimination, and hence the LU

decomposition, can be very numerically unstable if at any step the pivot is a very small number.

Most professional row reduction algorithms avoid this problem via partial pivoting.

The idea is to choose the largest number (in magnitude) possible to be the pivot by swapping

the pivot row2 with another row before operating on the matrix. For example, the second and fourth

rows of the following matrix are exchanged so that the pivot is −6 instead of 2.
× × × ×
0 2 × ×
0 4 × ×
0 −6 × ×

 −→

× × × ×
0 −6 × ×
0 4 × ×
0 2 × ×

 −→

× × × ×
0 −6 × ×
0 0 × ×
0 0 × ×

A row swap is equivalent to left-multiplying by a type II elementary matrix, also called a

permutation matrix.
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

× × × ×
0 2 × ×
0 4 × ×
0 −6 × ×

 =

× × × ×
0 −6 × ×
0 4 × ×
0 2 × ×

For the LU decomposition, if the permutation matrix at step k is Pk, then P = Pk . . . P2P1

yields PA = LU . The complete algorithm is given below.

2Complete pivoting involves row and column swaps, but doing both operations is usually considered overkill.

13

Algorithm 2.3

1: procedure LU Decomposition with Partial Pivoting(A)

2: m,n← shape(A)

3: U ← copy(A)

4: L← Im
5: P ← [0, 1, . . . , n− 1] . See tip 2 below.

6: for k = 0 . . . n− 1 do

7: Select i ≥ k that maximizes |Ui,k|
8: Uk,k: ↔ Ui,k: . Swap the two rows.

9: Lk,:k ↔ Li,:k . Swap the two rows.

10: Pk ↔ Pi . Swap the two entries.

11: Lk+1:,k ← Uk+1:,k/Uk,k

12: Uk+1:,k: ← Uk+1:,k: − Lk+1:,kU
T
k,k:

13: return L,U, P

The following tips may be helpful for implementing this algorithm:

1. Since NumPy arrays are mutable, use np.copy() to reassign the rows of an array simultane-

ously.

2. Instead of storing P as an n× n array, fancy indexing allows us to encode row swaps in a 1-D

array of length n. Initialize P as the array [0, 1, . . . , n]. After performing a row swap on A,

perform the same operations on P . Then the matrix product PA will be the same as A[P].

>>> A = np.zeros(3) + np.vstack(np.arange(3))

>>> P = np.arange(3)

>>> print(A)

[[0. 0. 0.]

[1. 1. 1.]

[2. 2. 2.]]

Swap rows 1 and 2.

>>> A[1], A[2] = np.copy(A[2]), np.copy(A[1])

>>> P[1], P[2] = P[2], P[1]

>>> print(A) # A with the new row arrangement.

[[0. 0. 0.]

[2. 2. 2.]

[1. 1. 1.]]

>>> print(P) # The permutation of the rows.

[0 2 1]

>>> print(A[P]) # A with the original row arrangement.

[[0. 0. 0.]

[1. 1. 1.]

[2. 2. 2.]]

There are potential cases where even partial pivoting does not eliminate catastrophic numerical

errors in Gaussian elimination, but the odds of having such an amazingly poor matrix are essentially

zero. The numerical analyst J.H. Wilkinson captured the likelihood of encountering such a matrix

in a natural application when he said, �Anyone that unlucky has already been run over by a bus!�

14 Lab 2. Linear Systems

In Place

The LU decomposition can be performed in place (overwriting the original matrix A) by storing U

on and above the main diagonal of the array and storing L below it. The main diagonal of L does

not need to be stored since all of its entries are 1. This format saves an entire array of memory, and

is how scipy.linalg.lu_factor() returns the factorization.

More Applications of the LU Decomposition

The LU decomposition can also be used to compute inverses and determinants with relative e�ciency.

� Inverse: (PA)−1 = (LU)−1 =⇒ A−1P−1 = U−1L−1 =⇒ LUA−1 = P . Solve LUai = pi

with forward and backward substitution (as in Problem 3) for every column pi of P . Then

A−1 =

 a1 a2 · · · an

 ,

the matrix where ak is the kth column.

� Determinant: det(A) = det(P−1LU) = det(L) det(U)
det(P) . The determinant of a triangular matrix

is the product of its diagonal entries. Since every diagonal entry of L is 1, det(L) = 1. Also, P

is just a row permutation of the identity matrix (which has determinant 1), and a single row

swap negates the determinant. Then if S is the number of row swaps, the determinant is

det(A) = (−1)S
n∏

i=1

uii.

The Cholesky Decomposition

A square matrix A is called positive de�nite if zTAz > 0 for all nonzero vectors z. In addition, A is

called Hermitian if A = AH = AT. If A is Hermitian positive de�nite, it has a Cholesky Decomposition

A = UHU where U is upper triangular with real, positive entries on the diagonal. This is the matrix

equivalent to taking the square root of a positive real number.

The Cholesky decomposition takes advantage of the conjugate symmetry of A to simultaneously

reduce the columns and rows of A to zeros (except for the diagonal). It thus requires only half of the

calculations and memory of the LU decomposition. Furthermore, the algorithm is numerically stable,

which means, roughly speaking, that round-o� errors do not propagate throughout the computation.

Algorithm 2.4

1: procedure Cholesky Decomposition(A)

2: n, n← shape(A)

3: U ← np.triu(A) . Get the upper-triangular part of A.

4: for i = 0 . . . n− 1 do

5: for j = i+ 1 . . . n− 1 do

6: Uj,j: ← Uj,j: − Ui,j:Uij/Uii

7: Ui,i: ← Ui,i:/
√
Uii

8: return U

As with the LU decomposition, SciPy's linalg module has optimized routines,

la.cho_factor() and la.cho_solve(), for using the Cholesky decomposition.

Bibliography

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scienti�c tools for

Python, 2001�. [Online; accessed 11/05/18]. [5]

15

	Linear Systems
	Bibliography

