
4 Object-oriented
Programming

Lab Objective: Python is a class-based language. A class is a blueprint for an object that binds

together speci�ed variables and routines. Creating and using custom classes is often a good way to

write clean, e�cient, well-designed programs. In this lab we learn how to de�ne and use Python

classes. In subsequent labs we will often create customized classes for use in algorithms.

Classes
A Python class is a code block that de�nes a custom object and determines its behavior. The class

key word de�nes and names a new class. Other statements follow, indented below the class name, to

determine the behavior of objects instantiated by the class.

A class needs a method called a constructor that is called whenever the class instantiates a new

object. The constructor speci�es the initial state of the object. In Python, a class's constructor is

always named __init__(). For example, the following code de�nes a class for storing information

about backpacks.

class Backpack:

"""A Backpack object class. Has a name and a list of contents.

Attributes:

name (str): the name of the backpack's owner.

contents (list): the contents of the backpack.

"""

def __init__(self, name): # This function is the constructor.

"""Set the name and initialize an empty list of contents.

Parameters:

name (str): the name of the backpack's owner.

"""

self.name = name # Initialize some attributes.

self.contents = []

1

2 Lab 4. Object-oriented Programming

An attribute is a variable stored within an object. The Backpack class has two attributes: name

and contents. In the body of the class de�nition, attributes are assigned and accessed via the name

self. This name refers to the object internally once it has been created.

Instantiation

The class code block above only de�nes a blueprint for backpack objects. To create an actual

backpack object, call the class name like a function. This triggers the constructor and returns a new

instance of the class, an object whose type is the class.

Import the Backpack class and instantiate an object called 'my_backpack'.

>>> from object_oriented import Backpack

>>> my_backpack = Backpack("Fred")

>>> type(my_backpack)

<class 'object_oriented.Backpack'>

Access the object's attributes with a period and the attribute name.

>>> print(my_backpack.name, my_backpack.contents)

Fred []

The object's attributes can be modified after instantiation.

>>> my_backpack.name = "George"

>>> print(my_backpack.name, my_backpack.contents)

George []

Note

Every object in Python has some built-in attributes. For example, modules have a __name__

attribute that identi�es the scope in which it is being executed. If the module is being run

directly, and not imported, then __name__ is set to "__main__". Therefore, any commands

under an if __name__ == "__main__": clause are ignored when the module is imported.

Methods

In addition to storing variables as attributes, classes can have functions attached to them. A function

that belongs to a speci�c class is called a method.

class Backpack:

...

def put(self, item):

"""Add an item to the backpack's list of contents."""

self.contents.append(item) # Use 'self.contents', not just 'contents'.

def take(self, item):

"""Remove an item from the backpack's list of contents."""

self.contents.remove(item)

3

The �rst argument of each method must be self, to give the method access to the attributes

and other methods of the class. The self argument is only included in the declaration of the class

methods, not when calling the methods on an instantiation of the class.

Add some items to the backpack object.

>>> my_backpack.put("notebook") # my_backpack is passed implicitly to

>>> my_backpack.put("pencils") # Backpack.put() as the first argument.

>>> my_backpack.contents

['notebook', 'pencils']

Remove an item from the backpack. # This is equivalent to

>>> my_backpack.take("pencils") # Backpack.take(my_backpack, "pencils")

>>> my_backpack.contents

['notebook']

Problem 1. Expand the Backpack class to match the following speci�cations.

1. Modify the constructor so that it accepts three total arguments: name, color, and

max_size (in that order). Make max_size a keyword argument that defaults to 5. Store

each input as an attribute.

2. Modify the put() method to check that the backpack does not go over capacity. If there

are already max_size items or more, print �No Room!� and do not add the item to the

contents list.

3. Write a new method called dump() that resets the contents of the backpack to an empty

list. This method should not receive any arguments (except self).

4. Documentation is especially important in classes so that the user knows what an ob-

ject's attributes represent and how to use methods appropriately. Update (or write) the

docstrings for the __init__(), put(), and dump() methods, as well as the actual class

docstring (under class but before __init__()) to re�ect the changes from parts 1-3 of

this problem.

To ensure that your class works properly, write a test function outside of the Backpack

class that instantiates and analyzes a Backpack object.

def test_backpack():

testpack = Backpack("Barry", "black") # Instantiate the object.

if testpack.name != "Barry": # Test an attribute.

print("Backpack.name assigned incorrectly")

for item in ["pencil", "pen", "paper", "computer"]:

testpack.put(item) # Test a method.

print("Contents:", testpack.contents)

...

4 Lab 4. Object-oriented Programming

Inheritance
To create a new class that is similar to one that already exists, it is often better to inherit the methods

and attributes from an existing class rather than create a new class from scratch. This creates a

class hierarchy : a class that inherits from another class is called a subclass, and the class that a

subclass inherits from is called a superclass. To de�ne a subclass, add the name of the superclass as

an argument at the end of the class declaration.

For example, since a knapsack is a kind of backpack (but not all backpacks are knapsacks), we

create a special Knapsack subclass that inherits the structure and behaviors of the Backpack class

and adds some extra functionality.

Inherit from the Backpack class in the class definition.

class Knapsack(Backpack):

"""A Knapsack object class. Inherits from the Backpack class.

A knapsack is smaller than a backpack and can be tied closed.

Attributes:

name (str): the name of the knapsack's owner.

color (str): the color of the knapsack.

max_size (int): the maximum number of items that can fit inside.

contents (list): the contents of the backpack.

closed (bool): whether or not the knapsack is tied shut.

"""

def __init__(self, name, color, max_size=3):

"""Use the Backpack constructor to initialize the name, color,

and max_size attributes. A knapsack only holds 3 item by default.

Parameters:

name (str): the name of the knapsack's owner.

color (str): the color of the knapsack.

max_size (int): the maximum number of items that can fit inside.

"""

Backpack.__init__(self, name, color, max_size)

self.closed = True

A subclass may have new attributes and methods that are unavailable to the superclass, such

as the closed attribute in the Knapsack class. If methods from the superclass need to be changed

for the subclass, they can be overridden by de�ning them again in the subclass. New methods can

be included normally.

class Knapsack(Backpack):

...

def put(self, item): # Override the put() method.

"""If the knapsack is untied, use the Backpack.put() method."""

if self.closed:

print("I'm closed!")

else: # Use Backpack's original put().

Backpack.put(self, item)

5

def take(self, item): # Override the take() method.

"""If the knapsack is untied, use the Backpack.take() method."""

if self.closed:

print("I'm closed!")

else:

Backpack.take(self, item)

def weight(self): # Define a new method just for knapsacks.

"""Calculate the weight of the knapsack by counting the length of the

string representations of each item in the contents list.

"""

return sum(len(str(item)) for item in self.contents)

Since Knapsack inherits from Backpack, a knapsack object is a backpack object. All methods

de�ned in the Backpack class are available as instances of the Knapsack class. For example, the

dump() method is available even though it is not de�ned explicitly in the Knapsack class.

The built-in function issubclass() shows whether or not one class is derived from another.

Similarly, isinstance() indicates whether or not an object belongs to a speci�ed class hierarchy.

Finally, hasattr() shows whether or not a class or object has a speci�ed attribute or method.

>>> from object_oriented import Knapsack

>>> my_knapsack = Knapsack("Brady", "brown")

A Knapsack is a Backpack, but a Backpack is not a Knapsack.

>>> print(issubclass(Knapsack, Backpack), issubclass(Backpack, Knapsack))

True False

>>> isinstance(my_knapsack, Knapsack) and isinstance(my_knapsack, Backpack)

True

The put() and take() method now require the knapsack to be open.

>>> my_knapsack.put('compass')

I'm closed!

Open the knapsack and put in some items.

>>> my_knapsack.closed = False

>>> my_knapsack.put("compass")

>>> my_knapsack.put("pocket knife")

>>> my_knapsack.contents

['compass', 'pocket knife']

The Knapsack class has a weight() method, but the Backpack class does not.

>>> print(hasattr(my_knapsack, 'weight'), hasattr(my_backpack, 'weight'))

True False

The dump method is inherited from the Backpack class.

>>> my_knapsack.dump()

>>> my_knapsack.contents

[]

6 Lab 4. Object-oriented Programming

Problem 2. Write a Jetpack class that inherits from the Backpack class.

1. Override the constructor so that in addition to a name, color, and maximum size, it also

accepts an amount of fuel. Change the default value of max_size to 2, and set the default

value of fuel to 10. Store the fuel as an attribute.

2. Add a fly() method that accepts an amount of fuel to be burned and decrements the

fuel attribute by that amount. If the user tries to burn more fuel than remains, print �Not

enough fuel!� and do not decrement the fuel.

3. Override the dump() method so that both the contents and the fuel tank are emptied.

4. Write clear, detailed docstrings for the class and each of its methods.

Note

All classes are subclasses of the built-in object class, even if no parent class is speci�ed in

the class de�nition. In fact, the syntax �class ClassName(object):� is not uncommon (or

incorrect) for the class declaration, and is equivalent to the simpler �class ClassName:�.

Magic Methods
A magic method is a special method used to make an object behave like a built-in data type. Magic

methods begin and end with two underscores, like the constructor __init__(). Every Python object

is automatically endowed with several magic methods, which can be revealed through IPython.

In [1]: %run object_oriented.py

In [2]: b = Backpack("Oscar", "green")

In [3]: b. # Press 'tab' to see standard methods and attributes.

color max_size take()

contents name

dump() put()

In [3]: b.__ # Press 'tab' to see magic methods and hidden attributes.

__add__() __getattribute__ __new__()

__class__ __gt__ __reduce__()

__delattr__ __hash__ __reduce_ex__()

__dict__ __init__() __repr__

__dir__() __init_subclass__() __setattr__

__doc__ __le__ __sizeof__()

__eq__ __lt__() __str__

__format__() __module__ __subclasshook__()

__ge__ __ne__ __weakref__

7

Note

Many programming languages distinguish between public and private variables. In Python, all

attributes are public, period. However, attributes that start with an underscore are hidden

from the user, which is why magic methods do not show up at �rst in the preceding code box.

The more common magic methods de�ne how an object behaves with respect to addition and

other binary operations. For example, how should addition be de�ned for backpacks? A simple

option is to add the number of contents. Then if backpack A has 3 items and backpack B has 5 items,

A + B should return 8. To incorporate this idea, we implement the __add__() magic method.

class Backpack:

...

def __add__(self, other):

"""Add the number of contents of each Backpack."""

return len(self.contents) + len(other.contents)

Using the + binary operator on two Backpack objects calls the class's __add__() method. The

object on the left side of the + is passed in to __add__() as self and the object on the right side of

the + is passed in as other.

>>> pack1 = Backpack("Rose", "red")

>>> pack2 = Backpack("Carly", "cyan")

Put some items in the backpacks.

>>> pack1.put("textbook")

>>> pack2.put("water bottle")

>>> pack2.put("snacks")

Add the backpacks together.

>>> pack1 + pack2 # Equivalent to pack1.__add__(pack2).

3

Comparisons

Magic methods also facilitate object comparisons. For example, the __lt__() method corresponds

to the < operator. Suppose one backpack is considered �less� than another if it has fewer items in its

list of contents.

class Backpack(object)

...

def __lt__(self, other):

"""If 'self' has fewer contents than 'other', return True.

Otherwise, return False.

"""

return len(self.contents) < len(other.contents)

8 Lab 4. Object-oriented Programming

Using the < binary operator on two Backpack objects calls __lt__(). As with addition, the

object on the left side of the < operator is passed to __lt__() as self, and the object on the right

is passed in as other.

>>> pack1, pack2 = Backpack("Maggy", "magenta"), Backpack("Yolanda", "yellow")

>>> pack1 < pack2 # Equivalent to pack1.__lt__(pack2).

False

>>> pack2.put('pencils')

>>> pack1 < pack2

True

Comparison methods should return either True or False, while methods like __add__() might

return a numerical value or another kind of object.

Method Arithmetic Operator

__add__() +

__sub__() -

__mul__() *

__pow__() **

__truediv__() /

__floordiv__() //

Method Comparison Operator

__lt__() <

__le__() <=

__gt__() >

__ge__() >=

__eq__() ==

__ne__() !=

Table 4.1: Common magic methods for arithmetic and comparisons. What each of these operations

do is up to the programmer and should be carefully documented. For more methods and details, see

https://docs.python.org/3/reference/datamodel.html#special-method-names.

Problem 3. Endow the Backpack class with two additional magic methods:

1. The __eq__() magic method is used to determine if two objects are equal, and is invoked

by the == operator. Implement the __eq__() magic method for the Backpack class so

that two Backpack objects are equal if and only if they have the same name, color, and

number of contents.

2. The __str__()magic method returns the string representation of an object. This method

is invoked by str() and used by print(). Implement the __str__() method in the

Backpack class so that printing a Backpack object yields the following output (that is,

construct and return the following string).

Owner: <name>

Color: <color>

Size: <number of items in contents>

Max Size: <max_size>

Contents: [<item1>, <item2>, ...]

(Hint: Use the tab and newline characters '\t' and '\n' to align output nicely.)

https://docs.python.org/3/reference/datamodel.html#special-method-names

9

Achtung!

Magic methods for comparison are not automatically related. For example, even though the

Backpack class implements the magic methods for < and ==, two Backpack objects cannot

respond to the <= operator unless __le__() is explicitly de�ned. The exception to this rule is

the != operator: as long as __eq__() is de�ned, A!=B is False if and only if A==B is True.

Problem 4. Write a ComplexNumber class from scratch.

1. Complex numbers are denoted a+ bi where a, b ∈ R and i =
√
−1. Write the constructor

so it accepts two numbers. Store the �rst as self.real and the second as self.imag.

2. The complex conjugate of a+bi is de�ned as a+ bi = a−bi. Write a conjugate() method

that returns the object's complex conjugate as a new ComplexNumber object.

3. Add the following magic methods:

(a) Implement __str__() so that a+ bi is printed out as (a+bj) for b ≥ 0 and (a-bj)

for b < 0.

(b) The magnitude of a + bi is |a + bi| =
√
a2 + b2. The __abs__() magic method

determines the output of the built-in abs() function (absolute value). Implement

__abs__() so that it returns the magnitude of the complex number.

(c) Implement __eq__() so that two ComplexNumber objects are equal if and only if

they have the same real and imaginary parts.

(d) Implement __add__(), __sub__(), __mul__(), and __truediv__() appropriately.

Each of these should return a new ComplexNumber object.

Write a function to test your class by comparing it to Python's built-in complex type.

def test_ComplexNumber(a, b):

py_cnum, my_cnum = complex(a, b), ComplexNumber(a, b)

Validate the constructor.

if my_cnum.real != a or my_cnum.imag != b:

print("__init__() set self.real and self.imag incorrectly")

Validate conjugate() by checking the new number's imag attribute.

if py_cnum.conjugate().imag != my_cnum.conjugate().imag:

print("conjugate() failed for", py_cnum)

Validate __str__().

if str(py_cnum) != str(my_cnum):

print("__str__() failed for", py_cnum)

...

10 Lab 4. Object-oriented Programming

Additional Material
Static Attributes

Attributes that are accessed through self are called instance attributes because they are bound to

a particular instance of the class. In contrast, a static attribute is one that is shared between all

instances of the class. To make an attribute static, declare it inside of the class block but outside of

any of the class's methods, and do not use self. Since the attribute is not tied to a speci�c instance

of the class, it may be accessed or changed via the class name without even instantiating the class

at all.

class Backpack:

...

brand = "Adidas" # Backpack.brand is a static attribute.

>>> pack1, pack2 = Backpack("Bill", "blue"), Backpack("William", "white")

>>> print(pack1.brand, pack2.brand, Backpack.brand)

Adidas Adidas Adidas

Change the brand name for the class to change it for all class instances.

>>> Backpack.brand = "Nike"

>>> print(pack1.brand, pack2.brand, Backpack.brand)

Nike Nike Nike

Static Methods

Individual class methods can also be static. A static method cannot be dependent on the attributes

of individual instances of the class, so there can be no references to self inside the body of the

method and self is not listed as an argument in the function de�nition. Thus static methods only

have access to static attributes and other static methods. Include the tag @staticmethod above the

function de�nition to designate a method as static.

class Backpack:

...

@staticmethod

def origin(): # Do not use 'self' as a parameter.

print("Manufactured by " + Backpack.brand + ", inc.")

Static methods can be called without instantiating the class.

>>> Backpack.origin()

Manufactured by Nike, inc.

The method can also be accessed by individual class instances.

>>> pack = Backpack("Larry", "lime")

>>> pack.origin()

Manufactured by Nike, inc.

11

To practice these principles, consider adding a static attribute to the Backpack class to serve as

a counter for a unique ID. In the constructor for the Backpack class, add an instance variable called

self.ID. Set this ID based on the static ID variable, then increment the static ID so that the next

Backpack object will have a di�erent ID.

More Magic Methods

Consider how the following methods might be implemented for the Backpack class. These methods

are particularly important for custom data structure classes.

Method Operation Trigger Function

__bool__() Truth value bool()

__len__() Object length or size len()

__repr__() Object representation repr()

__getitem__() Indexing and slicing self[index]

__setitem__() Assignment via indexing self[index] = x

__iter__() Iteration over the object iter()

__reversed__() Reverse iteration over the object reversed()

__contains__() Membership testing in

See https://docs.python.org/3/reference/datamodel.html#special-method-names for more

details and documentation on all magic methods.

Hashing

A hash value is an integer that uniquely identi�es an object. The built-in hash() function calculates

an object's hash value by calling its __hash__() magic method.

In Python, the built-in set and dict structures use hash values to store and retrieve objects

in memory quickly. If an object is unhashable, it cannot be put in a set or be used as a key in a

dictionary. See https://docs.python.org/3/glossary.html#term-hashable for details.

If the __hash__() method is not de�ned, the default hash value is the object's memory address

(accessible via the built-in function id()) divided by 16, rounded down to the nearest integer. How-

ever, two objects that compare as equal via the __eq__() magic method must have the same hash

value. The following simple __hash__() method for the Backpack class conforms to this rule and

returns an integer.

class Backpack:

...

def __hash__(self):

return hash(self.name) ^ hash(self.color) ^ hash(len(self.contents))

The caret operator � is a bitwise XOR (exclusive or). The bitwise AND operator & and the

bitwise OR operator | are also good choices to use.

See https://docs.python.org/3/reference/datamodel.html#object.__hash__ for more on

hashing.

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/reference/datamodel.html#object.__hash__

	Object-oriented Programming

