
3 The QR
Decomposition

Lab Objective: The QR decomposition is a fundamentally important matrix factorization. It

is straightforward to implement, is numerically stable, and provides the basis of several important

algorithms. In this lab we explore several ways to produce the QR decomposition and implement a

few immediate applications.

The QR decomposition of a matrix A is a factorization A = QR, where Q is has orthonormal

columns and R is upper triangular. Every m× n matrix A of rank n ≤ m has a QR decomposition,

with two main forms.

� Reduced QR: Q is m × n, R is n × n, and the columns {qj}nj=1 of Q form an orthonormal

basis for the column space of A.

� Full QR: Q is m × m and R is m × n. In this case, the columns {qj}mj=1 of Q form an

orthonormal basis for all of Fm, and the last m − n rows of R only contain zeros. If m = n,

this is the same as the reduced factorization.

We distinguish between these two forms by writing Q̂ and R̂ for the reduced decomposition and Q

and R for the full decomposition.

Q̂ (m× n) R̂ (n× n)
q1 · · · qn qn+1 · · · qm





r11 · · · r1n
. . .

...

rnn
0 · · · 0
...

...

0 · · · 0


= A (m× n)

Q (m×m) R (m× n)

QR via Gram-Schmidt
The classical Gram-Schmidt algorithm takes a linearly independent set of vectors and constructs an

orthonormal set of vectors with the same span. Applying Gram-Schmidt to the columns of A, which

are linearly independent since A has rank n, results in the columns of Q.

1

2 Lab 3. The QR Decomposition

Let {xj}nj=1 be the columns of A. De�ne

q1 =
x1

‖x1‖
, qk =

xk − pk−1
‖xk − pk−1‖

, k = 2, . . . , n,

p0 = 0, pk−1 =

k−1∑
j=1

〈qj ,xk〉qj , k = 2, . . . , n.

Each pk−1 is the projection of xk onto the span of {qj}k−1j=1 , so q′k = xk − pk−1 is the residual

vector of the projection. Thus q′k is orthogonal to each of the vectors in {qj}k−1j=1 . Therefore,

normalizing each q′k produces an orthonormal set {qj}nj=1.

To construct the reduced QR decomposition, let Q̂ be the matrix with columns {qj}nj=1, and

let R̂ be the upper triangular matrix with entries

rkk = ‖xk − pk−1‖, rjk = 〈qj ,xk〉 = qT
j xk, j < k.

This clever choice of entries for R̂ reverses the Gram-Schmidt process and ensures that Q̂R̂ = A.

Modified Gram-Schmidt

If the columns of A are close to being linearly dependent, the classical Gram-Schmidt algorithm

often produces a set of vectors {qj}nj=1 that are not even close to orthonormal due to rounding

errors. The modi�ed Gram-Schmidt algorithm is a slight variant of the classical algorithm which

more consistently produces a set of vectors that are �very close� to orthonormal.

Let q1 be the normalization of x1 as before. Instead of making just x2 orthogonal to q1, make

each of the vectors {xj}nj=2 orthogonal to q1:

xk = xk − 〈q1,xk〉q1, k = 2, . . . , n.

Next, de�ne q2 = x2

‖x2‖ . Proceed by making each of {xj}nj=3 orthogonal to q2:

xk = xk − 〈q2,xk〉q2, k = 3, . . . , n.

Since each of these new vectors is a linear combination of vectors orthogonal to q1, they are orthogonal

to q1 as well. Continuing this process results in the desired orthonormal set {qj}nj=1. The entire

modi�ed Gram-Schmidt algorithm is described below.

Algorithm 3.1

1: procedure Modified Gram-Schmidt(A)

2: m,n← shape(A) . Store the dimensions of A.

3: Q← copy(A) . Make a copy of A with np.copy().

4: R← zeros(n, n) . An n× n array of all zeros.

5: for i = 0 . . . n− 1 do

6: Ri,i ← ‖Q:,i‖
7: Q:,i ← Q:,i/Ri,i . Normalize the ith column of Q.

8: for j = i+ 1 . . . n− 1 do

9: Ri,j ← QT
:,jQ:,i

10: Q:,j ← Q:,j −Ri,jQ:,i . Orthogonalize the jth column of Q.

11: return Q,R

3

Problem 1. Write a function that accepts an m × n matrix A of rank n. Use Algorithm 3.1

to compute the reduced QR decomposition of A.

Consider the following tips for implementing the algorithm.

� Use scipy.linalg.norm() to compute the norm of the vector in step 6.

� Note that steps 7 and 10 employ scalar multiplication or division, while step 9 uses vector

multiplication.

To test your function, generate test cases with NumPy's np.random module. Verify that

R is upper triangular, Q is orthonormal, and QR = A. You may also want to compare your

results to SciPy's QR factorization routine, scpiy.linalg.qr().

>>> import numpy as np

>>> from scipy import linalg as la

Generate a random matrix and get its reduced QR decomposition via SciPy.

>>> A = np.random.random((6,4))

>>> Q,R = la.qr(A, mode="economic") # Use mode="economic" for reduced QR.

>>> print(A.shape, Q.shape, R.shape)

(6,4) (6,4) (4,4)

Verify that R is upper triangular, Q is orthonormal, and QR = A.

>>> np.allclose(np.triu(R), R)

True

>>> np.allclose(Q.T @ Q, np.identity(4))

True

>>> np.allclose(Q @ R, A)

True

Consequences of the QR Decomposition
The special structures of Q and R immediately provide some simple applications.

Determinants

Let A be n × n. Then Q and R are both n × n as well.1 Since Q is orthonormal and R is upper-

triangular,

det(Q) = ±1 and det(R) =

n∏
i=1

ri,i.

Then since det(AB) = det(A) det(B),

|det(A)| = |det(QR)| = |det(Q) det(R)| = |det(Q)| |det(R)| =

∣∣∣∣∣
n∏
i=1

ri,i

∣∣∣∣∣ . (3.1)

1An n× n orthonormal matrix is sometimes called unitary in other texts.

4 Lab 3. The QR Decomposition

Problem 2. Write a function that accepts an invertible matrix A. Use the QR decomposition

of A and (3.1) to calculate |det(A)|. You may use your QR decomposition algorithm from

Problem 1 or SciPy's QR routine. Can you implement this function in a single line?

(Hint: np.diag() and np.prod() may be useful.)

Check your answer against la.det(), which calculates the determinant.

Linear Systems

The LU decomposition is usually the matrix factorization of choice to solve the linear system Ax = b

because the triangular structures of L and U facilitate forward and backward substitution. However,

the QR decomposition avoids the potential numerical issues that come with Gaussian elimination.

Since Q is orthonormal, Q−1 = QT. Therefore, solving Ax = b is equivalent to solving the

system Rx = QTb. Since R is upper-triangular, Rx = QTb can be solved quickly with back

substitution.2

Problem 3. Write a function that accepts an invertible n × n matrix A and a vector b of

length n. Use the QR decomposition to solve Ax = b in the following steps:

1. Compute Q and R.

2. Calculate y = QTb.

3. Use back substitution to solve Rx = y for x.

QR via Householder
The Gram-Schmidt algorithm orthonormalizes A using a series of transformations that are stored

in an upper triangular matrix. Another way to compute the QR decomposition is to take the

opposite approach: triangularize A through a series of orthonormal transformations. Orthonormal

transformations are numerically stable, meaning that they are less susceptible to rounding errors. In

fact, this approach is usually faster and more accurate than Gram-Schmidt methods.

The idea is for the kth orthonormal transformation Qk to map the kth column of A to the span

of {ej}kj=1, where the ej are the standard basis vectors in Rm. In addition, to preserve the work of

the previous transformations, Qk should not modify any entries of A that are above or to the left of

the kth diagonal term of A. For a 4× 3 matrix A, the process can be visualized as follows.

Q3Q2Q1


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = Q3Q2


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 = Q3


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


Thus Q3Q2Q1A = R, so that A = QT

1Q
T
2Q

T
3R since each Qk is orthonormal. Furthermore, the

product of square orthonormal matrices is orthonormal, so setting Q = QT
1Q

T
2Q

T
3 yields the full QR

decomposition.

How to correctly construct each Qk isn't immediately obvious. The ingenious solution lies in

one of the basic types of linear transformations: re�ections.

2See the Linear Systems lab for details on back substitution.

5

Householder Transformations

The orthogonal complement of a nonzero vector v ∈ Rn is the set of all vectors x ∈ Rn that are

orthogonal to v, denoted v⊥ = {x ∈ Rn | 〈x,v〉 = 0}. A Householder transformation is a linear

transformation that re�ects a vector x across the orthogonal complement v⊥ for some speci�ed v.

The matrix representation of the Householder transformation corresponding to v is given by

Hv = I − 2vvT

vTv
. Since HT

vHv = I, Householder transformations are orthonormal.

v

x

Hvx

v⊥

Figure 3.1: The vector v de�nes the orthogonal complement v⊥, which in this case is a line. Applying

the Householder transformation Hv to x re�ects x across v⊥.

Householder Triangularization

The Householder algorithm uses Householder transformations for the orthonormal transformations

in the QR decomposition process described on the previous page. The goal in choosing Qk is to send

xk, the kth column of A, to the span of {ej}kj=1. In other words, if Qkxk = yk, the last m−k entries
of yk should be 0, i.e.,

Qkxk = Qk



z1
...

zk
zk+1

...

zm


=



y1
...

yk
0
...

0


= yk.

To begin, decompose xk into xk = x′k + x′′k , where x′k and x′′k are of the form

x′k = [z1 · · · zk−1 0 · · · 0]
T
, x′′k = [0 · · · 0 zk · · · zm]

T
.

Because x′k represents elements of A that lie above the diagonal, only x′′k needs to be altered by the

re�ection.

The two vectors x′′k ± ‖x′′k‖ek both yield Householder transformations that send x′′k to the

span of ek (see Figure 3.2). Between the two, the one that re�ects x′′k further is more numerically

stable. This re�ection corresponds to

vk = x′′k + sign(zk)‖x′′k‖ek,

where zk is the �rst nonzero component of x′′k (the kth component of xk).

6 Lab 3. The QR Decomposition

Hv1x

xv1

v2

Hv2x

Figure 3.2: There are two re�ections that map x into the span of e1, de�ned by the vectors v1 and

v2. In this illustration, Hv2 is the more stable transformation since it re�ects x further than Hv1 .

After choosing vk, set uk = vk

‖vk‖ . Then Hvk
= I − 2

vkv
T
k

‖vk‖2 = I − 2uku
T
k , and hence Qk is given

by the block matrix

Qk =

[
Ik−1 0

0 Hvk

]
=

[
Ik−1 0

0 Im−k+1 − 2uku
T
k

]
.

Here Ip denotes the p× p identity matrix, and thus each Qk is m×m.

It is apparent from its form that Qk does not a�ect the �rst k − 1 rows and columns of any

matrix that it acts on. Then by starting with R = A and Q = I, at each step of the algorithm we

need only multiply the entries in the lower right (m− k + 1)× (m− k + 1) submatrices of R and Q

by I − 2uku
T
k . This completes the Householder algorithm, detailed below.

Algorithm 3.2

1: procedure Householder(A)

2: m,n← shape(A)

3: R← copy(A)

4: Q← Im . The m×m identity matrix.

5: for k = 0 . . . n− 1 do

6: u← copy(Rk:,k)

7: u0 ← u0 + sign(u0)‖u‖ . u0 is the �rst entry of u.

8: u← u/‖u‖ . Normalize u.

9: Rk:,k: ← Rk:,k: − 2u
(
uTRk:,k:

)
. Apply the re�ection to R.

10: Qk:,: ← Qk:,: − 2u
(
uTQk:,:

)
. Apply the re�ection to Q.

11: return QT, R

Problem 4. Write a function that accepts as input a m×n matrix A of rank n. Use Algorithm

3.2 to compute the full QR decomposition of A.

Consider the following implementation details.

� NumPy's np.sign() is an easy way to implement the sign() operation in step 7. However,

np.sign(0) returns 0, which will cause a problem in the rare case that u0 = 0 (which is

possible if the top left entry of A is 0 to begin with). The following code de�nes a function

that returns the sign of a single number, counting 0 as positive.

7

sign = lambda x: 1 if x >= 0 else -1

� In steps 9 and 10, the multiplication of u and (uTX) is an outer product (xyT instead of

the usual xTy). Use np.outer() instead of np.dot() to handle this correctly.

Use NumPy and SciPy to generate test cases and validate your function.

>>> A = np.random.random((5, 3))

>>> Q,R = la.qr(A) # Get the full QR decomposition.

>>> print(A.shape, Q.shape, R.shape)

(5,3) (5,5) (5,3)

>>> np.allclose(Q @ R, A)

True

Upper Hessenberg Form
An upper Hessenberg matrix is a square matrix that is nearly upper triangular, with zeros below

the �rst subdiagonal. Every n × n matrix A can be written A = QHQT where Q is orthonormal

and H, called the Hessenberg form of A, is an upper Hessenberg matrix. Putting a matrix in upper

Hessenberg form is an important �rst step to computing its eigenvalues numerically.

This algorithm also uses Householder transformations. To �nd orthogonal Q and upper Hes-

senberg H such that A = QHQT, it su�ces to �nd such matrices that satisfy QTAQ = H. Thus,

the strategy is to multiply A on the left and right by a series of orthonormal matrices until it is in

Hessenberg form.

Using the same Qk as in the kth step of the Householder algorithm introduces n − k zeros in

the kth column of A, but multiplying QkA on the right by QT
k destroys all of those zeros. Instead,

choose a Q1 that �xes e1 and re�ects the �rst column of A into the span of e1 and e2. The product

Q1A then leaves the �rst row of A alone, and the product (Q1A)Q
T
1 leaves the �rst column of (Q1A)

alone. 
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q1−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 QT
1−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


A Q1A (Q1A)Q

T
1

Continuing the process results in the upper Hessenberg form of A.

Q3Q2Q1AQ
T
1Q

T
2Q

T
3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


This implies that A = QT

1Q
T
2Q

T
3HQ3Q2Q1, so setting Q = QT

1Q
T
2Q

T
3 results in the desired

factorization A = QHQT.

8 Lab 3. The QR Decomposition

Constructing the Reflections

Constructing the Qk uses the same approach as in the Householder algorithm, but shifted down one

element. Let xk = y′k + y′′k where y′k and y′′k are of the form

y′k = [z1 · · · zk 0 · · · 0]
T
, y′′k = [0 · · · 0 zk+1 · · · zm]

T
.

Because y′k represents elements of A that lie above the �rst subdiagonal, only y′′k needs to be altered.

This suggests using the re�ection

Qk =

[
Ik 0

0 Hvk

]
=

[
Ik 0

0 Im−k − 2uku
T
k

]
, where

vk = y′′k + sign(zk)‖y′′k‖ek, uk =
vk
‖vk‖

.

The complete algorithm is given below. Note how similar it is to Algorithm 3.2.

Algorithm 3.3

1: procedure Hessenberg(A)

2: m,n← shape(A)

3: H ← copy(A)

4: Q← Im
5: for k = 0 . . . n− 3 do

6: u← copy(Hk+1:,k)

7: u0 ← u0 + sign(u0)‖u‖
8: u← u/‖u‖
9: Hk+1:,k: ← Hk+1:,k: − 2u(uTHk+1:,k:) . Apply Qk to H.

10: H:,k+1: ← H:,k+1: − 2(H:,k+1:u)u
T . Apply QT

k to H.

11: Qk+1:,: ← Qk+1:,: − 2u(uTQk+1:,:) . Apply Qk to Q.

12: return H,QT

Problem 5. Write a function that accepts a nonsingular n × n matrix A. Use Algorithm 3.3

to compute the upper Hessenberg H and orthogonal Q satisfying A = QHQT.

Compare your results to scipy.linalg.hessenberg().

Generate a random matrix and get its upper Hessenberg form via SciPy.

>>> A = np.random.random((8,8))

>>> H, Q = la.hessenberg(A, calc_q=True)

Verify that H has all zeros below the first subdiagonal and QHQ^T = A.

>>> np.allclose(np.triu(H, -1), H)

True

>>> np.allclose(Q @ H @ Q.T, A)

True

9

Additional Material
Complex QR Decomposition

The QR decomposition also exists for matrices with complex entries. The standard inner product in

Rm is 〈x,y〉 = xTy, but the (more general) standard inner product in Cm is 〈x,y〉 = xHy. The H

stands for the Hermitian conjugate, the conjugate of the transpose. Making a few small adjustments

in the implementations of Algorithms 3.1 and 3.2 accounts for using the complex inner product.

1. Replace any transpose operations with the conjugate of the transpose.

>>> A = np.reshape(np.arange(4) + 1j*np.arange(4), (2,2))

>>> print(A)

[[0.+0.j 1.+1.j]

[2.+2.j 3.+3.j]]

>>> print(A.T) # Regular transpose.

[[0.+0.j 2.+2.j]

[1.+1.j 3.+3.j]]

>>> print(A.conj().T) # Hermitian conjugate.

[[0.-0.j 2.-2.j]

[1.-1.j 3.-3.j]]

2. Conjugate the �rst entry of vector or matrix multiplication before multiplying with np.dot().

>>> x = np.arange(2) + 1j*np.arange(2)

>>> print(x)

[0.+0.j 1.+1.j]

>>> np.dot(x, x) # Standard real inner product.

2j

>>> np.dot(x.conj(), y) # Standard complex inner product.

(2 + 0j)

3. In the complex plane, there are in�nitely many re�ections that map a vector x into the span

of ek, not just the two displayed in Figure 3.2. Using sign(zk) to choose one is still a valid

method, but it requires updating the sign() function so that it can handle complex numbers.

sign = lambda x: 1 if np.real(x) >= 0 else -1

QR with Pivoting

The LU decomposition can be improved by employing Gaussian elimination with partial pivoting,

where the rows of A are strategically permuted at each iteration. The QR factorization can be

similarly improved by permuting the columns of A at each iteration. The result is the factorization

AP = QR, where P is a permutation matrix that encodes the column swaps. To compute the pivoted

QR decomposition with scipy.linalg.qr(), set the keyword pivoting to True.

10 Lab 3. The QR Decomposition

Get the decomposition AP = QR for a random matrix A.

>>> A = np.random.random((8,10))

>>> Q,R,P = la.qr(A, pivoting=True)

P is returned as a 1-D array that encodes column ordering,

so A can be reconstructed with fancy indexing.

>>> np.allclose(Q @ R, A[:,P])

True

QR via Givens

The Householder algorithm uses re�ections to triangularize A. However, A can also be made upper

triangular using rotations. To illustrate the idea, recall that the matrix for a counterclockwise rotation

of θ radians is given by

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
.

This transformation is orthonormal. Given x = [a, b]
T
, if θ is the angle between x and e1, then

R−θ maps x to the span of e1.

a

b

θ

Figure 3.3: Rotating clockwise by θ sends the vector [a, b]
T
to the span of e1.

In terms of a and b, cos θ = a√
a2+b2

and sin θ = b√
a2+b2

. Therefore,

R−θx =

[
cos θ sin θ

− sin θ cos θ

] [
a

b

]
=


a√

a2+b2
b√

a2+b2

− b√
a2+b2

a√
a2+b2

[a

b

]
=

[√
a2 + b2

0

]
.

The matrix Rθ above is an example of a 2 × 2 Givens rotation matrix. In general, the Givens

matrix G(i, j, θ) represents the orthonormal transformation that rotates the 2-dimensional span of

ei and ej by θ radians. The matrix representation of this transformation is a generalization of Rθ.

G(i, j, θ) =


I 0 0 0 0

0 c 0 −s 0

0 0 I 0 0

0 s 0 c 0

0 0 0 0 I


Here I represents the identity matrix, c = cos θ, and s = sin θ. The c's appear on the ith and

jth diagonal entries.

11

Givens Triangularization

As demonstrated, θ can be chosen such that G(i, j, θ) rotates a vector so that its jth-component is

0. Such a transformation will only a�ect the ith and jth entries of any vector it acts on (and thus

the ith and jth rows of any matrix it acts on).

To compute the QR decomposition of A, iterate through the subdiagonal entries of A in the

order depicted by Figure 3.4. Zero out the ijth entry with a rotation in the plane spanned by ei−1
and ei, represented by the Givens matrix G(i− 1, i, θ).

1 2 3 4 5

Figure 3.4: The order in which to zero out subdiagonal entries in the Givens triangularization

algorithm. The heavy black line is the main diagonal of the matrix. Entries should be zeroed out

from bottom to top in each column, beginning with the leftmost column.

On a 2× 3 matrix, the process can be visualized as follows.

 ∗ ∗∗ ∗
∗ ∗

G(2, 3, θ1)−−−−−−−→

 ∗ ∗
∗ ∗
0 ∗

G(1, 2, θ2)−−−−−−−→

 ∗ ∗
0 ∗
0 ∗

G(2, 3, θ3)−−−−−−−→

 ∗ ∗
0 ∗
0 0



At each stage, the boxed entries are those modi�ed by the previous transformation. The �nal

transformation G(2, 3, θ3) operates on the bottom two rows, but since the �rst two entries are zero,

they are una�ected.

Assuming that at the ijth stage of the algorithm aij is nonzero, Algorithm 3.4 computes the

Givens triangularization of a matrix. Notice that the algorithm does not actually form the entire

matrices G(i, j, θ); instead, it modi�es only those entries of the matrix that are a�ected by the

transformation.

12 Lab 3. The QR Decomposition

Algorithm 3.4

1: procedure Givens Triangularization(A)

2: m,n← shape(A)

3: R← copy(A)

4: Q← Im
5: for j = 0 . . . n− 1 do

6: for i = m− 1 . . . j + 1 do

7: a, b← Ri−1,j , Ri,j
8: G← [[a, b], [−b, a]]/

√
a2 + b2

9: Ri−1:i+1,j: ← GRi−1:i+1,j:

10: Qi−1:i+1,: ← GQi−1:i+1,:

11: return QT, R

QR of a Hessenberg Matrix via Givens

The Givens algorithm is particularly e�cient for computing the QR decomposition of a matrix that is

already in upper Hessenberg form, since only the �rst subdiagonal needs to be zeroed out. Algorithm

3.5 details this process.

Algorithm 3.5

1: procedure Givens Triangularization of Hessenberg(H)

2: m,n← shape(H)

3: R← copy(H)

4: Q← Im
5: for j = 0 . . .min{n− 1,m− 1} do
6: i = j + 1

7: a, b← Ri−1,j , Ri,j
8: G← [[a, b], [−b, a]]/

√
a2 + b2

9: Ri−1:i+1,j: ← GRi−1:i+1,j:

10: Qi−1:i+1,:i+1 ← GQi−1:i+1,:i+1

11: return QT, R

Note

When A is symmetric, its upper Hessenberg form is a tridiagonal matrix, meaning its only

nonzero entries are on the main diagonal, the �rst subdiagonal, and the �rst superdiagonal.

This is because the Qk's zero out everything below the �rst subdiagonal of A and the QT
k 's zero

out everything to the right of the �rst superdiagonal. Tridiagonal matrices make computations

fast, so computing the Hessenberg form of a symmetric matrix is very useful.

	The QR Decomposition

