
4 Least Squares and
Computing
Eigenvalues

Lab Objective: Because of its numerical stability and convenient structure, the QR decomposition

is the basis of many important and practical algorithms. In this lab we introduce linear least squares

problems, tools in Python for computing least squares solutions, and two fundamental algorithms

for computing eigenvalue. The QR decomposition makes solving several of these problems quick and

numerically stable.

Least Squares
A linear system Ax = b is overdetermined if it has more equations than unknowns. In this situation,

there is no true solution, and x can only be approximated.

The least squares solution of Ax = b, denoted x̂, is the �closest� vector to a solution, meaning

it minimizes the quantity ‖Ax̂− b‖2. In other words, x̂ is the vector such that Ax̂ is the projection

of b onto the range of A, and can be calculated by solving the normal equations,1

ATAx̂ = ATb.

If A is full rank (which it usually is in applications) its QR decomposition provides an e�cient

way to solve the normal equations. Let A = Q̂R̂ be the reduced QR decomposition of A, so Q̂ is

m× n with orthonormal columns and R̂ is n× n, invertible, and upper triangular. Since Q̂TQ̂ = I,

and since R̂T is invertible, the normal equations can be reduced as follows (we omit the hats on Q̂

and R̂ for clarity).

ATAx̂ = ATb

(QR)TQRx̂ = (QR)Tb

RTQTQRx̂ = RTQTb

RTRx̂ = RTQTb

Rx̂ = QTb (4.1)

Thus x̂ is the least squares solution to Ax = b if and only if R̂x̂ = Q̂Tb. Since R̂ is upper

triangular, this equation can be solved quickly with back substitution.

1See Volume 1 for a formal derivation of the normal equations.

1

2 Lab 4. Least Squares and Computing Eigenvalues

Problem 1. Write a function that accepts an m × n matrix A of rank n and a vector b of

length m. Use the reduced QR decomposition of A and (4.1) to solve the normal equations

corresponding to Ax = b.

You may use either SciPy's reduced QR routine (la.qr() with mode="economic") or one

of your own reduced QR routines. In addition, you may use la.solve_triangular(), SciPy's

optimized routine for solving triangular systems.

Fitting a Line

The least squares solution can be used to �nd the best �t curve of a chosen type to a set of points.

Consider the problem of �nding the line y = ax + b that best �ts a set of m points {(xk, yk)}mk=1.

Ideally, we seek a and b such that yk = axk + b for all k. These equations can be simultaneously

represented by the linear system

Ax =

x1 1

x2 1

x3 1
...

...

xm 1

[
a

b

]
=

y1
y2
y3
...

ym

 = b. (4.2)

Note that A has full column rank as long as not all of the xk values are the same.

Because this system has two unknowns, it is guaranteed to have a solution if it has two or fewer

equations. However, if there are more than two data points, the system is overdetermined if any set

of three points is not collinear. We therefore seek a least squares solution, which in this case means

�nding the slope â and y-intercept b̂ such that the line y = âx+ b̂ best �ts the data.

Figure 4.1 is a typical example of this idea where â ≈ 1
2 and b̂ ≈ −3.

0 2 4 6 8 10
3

2

1

0

1

2
Data Points
Least Squares Fit

Figure 4.1: A linear least squares �t.

3

Problem 2. The �le housing.npy contains the purchase-only housing price index, a measure

of how housing prices are changing, for the United States from 2000 to 2010.a Each row in the

array is a separate measurement; the columns are the year and the price index, in that order.

To avoid large numerical computations, the year measurements start at 0 instead of 2000.

Find the least squares line that relates the year to the housing price index (i.e., let year

be the x-axis and index the y-axis).

1. Construct the matrix A and the vector b described by (4.2).

(Hint: np.vstack(), np.column_stack(), and/or np.ones() may be helpful.)

2. Use your function from Problem 1 to �nd the least squares solution.

3. Plot the data points as a scatter plot.

4. Plot the least squares line with the scatter plot.

aSee http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx.

Note

The least squares problem of �tting a line to a set of points is often called linear regression,

and the resulting line is called the linear regression line. SciPy's specialized tool for linear

regression is scipy.stats.linregress(). This function takes in an array of x-coordinates and

a corresponding array of y-coordinates, and returns the slope and intercept of the regression

line, along with a few other statistical measurements.

For example, the following code produces Figure 4.1.

>>> import numpy as np

>>> from scipy.stats import linregress

Generate some random data close to the line y = .5x - 3.

>>> x = np.linspace(0, 10, 20)

>>> y = .5*x - 3 + np.random.randn(20)

Use linregress() to calculate m and b, as well as the correlation

coefficient, p-value, and standard error. See the documentation for

details on each of these extra return values.

>>> a, b, rvalue, pvalue, stderr = linregress(x, y)

>>> plt.plot(x, y, 'k*', label="Data Points")

>>> plt.plot(x, a*x + b, label="Least Squares Fit")

>>> plt.legend(loc="upper left")

>>> plt.show()

http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx

4 Lab 4. Least Squares and Computing Eigenvalues

Fitting a Polynomial

Least squares can also be used to �t a set of data to the best �t polynomial of a speci�ed degree. Let

{(xk, yk)}mk=1 be the set of m data points in question. The general form for a polynomial of degree

n is

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0 =

n∑
i=0

cix
i.

Note that the polynomial is uniquely determined by its n + 1 coe�cients {ci}ni=0. Ideally, then, we

seek the set of coe�cients {ci}ni=0 such that

yk = cnx
n
k + cn−1x

n−1
k + · · ·+ c2x

2
k + c1xk + c0

for all values of k. These m linear equations yield the linear system

Ax =

xn1 xn−11 · · · x21 x1 1

xn2 xn−12 · · · x22 x2 1

xn3 xn−13 · · · x23 x3 1
...

...
...

...
...

xnm xn−1m · · · x2m xm 1

cn
cn−1
...

c2
c1
c0

=

y1
y2
y3
...

ym

 = b. (4.3)

If m > n+ 1 this system is overdetermined, requiring a least squares solution.

Working with Polynomials in NumPy

The m × (n + 1) matrix A of (4.3) is called a Vandermonde matrix.2 NumPy's np.vander() is a

convenient tool for quickly constructing a Vandermonde matrix, given the values {xk}mk=1 and the

number of desired columns.

>>> print(np.vander([2, 3, 5], 2))

[[2 1] # [[2**1, 2**0]

[3 1] # [3**1, 3**0]

[5 1]] # [5**1, 5**0]]

>>> print(np.vander([2, 3, 5, 4], 3))

[[4 2 1] # [[2**2, 2**1, 2**0]

[9 3 1] # [3**2, 3**1, 3**0]

[25 5 1] # [5**2, 5**1, 5**0]

[16 4 1]] # [4**2, 4**1, 4**0]

NumPy also has powerful tools for working e�ciently with polynomials. The class np.poly1d

represents a 1-dimensional polynomial. Instances of this class are callable like a function.3 The

constructor accepts the polynomial's coe�cients, from largest degree to smallest.

Table 4.1 lists some attributes and methods of the np.poly1d class.

2Vandermonde matrices have many special properties and are useful for many applications, including polynomial

interpolation and discrete Fourier analysis.
3Class instances can be made callable by implementing the __call__() magic method.

5

Attribute Description

coeffs The n+ 1 coe�cients, from greatest degree to least.

order The polynomial degree (n).

roots The n− 1 roots.

Method Returns

deriv() The coe�cients of the polynomial after being di�erentiated.

integ() The coe�cients of the polynomial after being integrated (with c0 = 0).

Table 4.1: Attributes and methods of the np.poly1d class.

Create a callable object for the polynomial f(x) = (x-1)(x-2) = x^2 - 3x + 2.

>>> f = np.poly1d([1, -3, 2])

>>> print(f)

2

1 x - 3 x + 2

Evaluate f(x) for several values of x in a single function call.

>>> f([1, 2, 3, 4])

array([0, 0, 2, 6])

Problem 3. The data in housing.npy is nonlinear, and might be better �t by a polynomial

than a line.

Write a function that uses (4.3) to calculate the polynomials of degree 3, 6, 9, and 12 that

best �t the data. Plot the original data points and each least squares polynomial together in

individual subplots.

(Hint: de�ne a separate, re�ned domain with np.linspace() and use this domain to smoothly

plot the polynomials.)

Instead of using Problem 1 to solve the normal equations, you may use SciPy's least

squares routine, scipy.linalg.lstsq().

>>> from scipy import linalg as la

Define A and b appropriately.

Solve the normal equations using SciPy's least squares routine.

The least squares solution is the first of four return values.

>>> x = la.lstsq(A, b)[0]

Compare your results to np.polyfit(). This function receives an array of x values, an

array of y values, and an integer for the polynomial degree, and returns the coe�cients of the

best �t polynomial of that degree.

6 Lab 4. Least Squares and Computing Eigenvalues

Achtung!

Having more parameters in a least squares model is not always better. For a set ofm points, the

best �t polynomial of degree m− 1 interpolates the data set, meaning that p(xk) = yk exactly

for each k. In this case there are enough unknowns that the system is no longer overdetermined.

However, such polynomials are highly subject to numerical errors and are unlikely to accurately

represent true patterns in the data.

Choosing to have too many unknowns in a �tting problem is (�ttingly) called over�tting,

and is an important issue to avoid in any statistical model.

Fitting a Circle

Suppose the set of m points {(xk, yk)}mk=1 are arranged in a nearly circular pattern. The general

equation of a circle with radius r and center (c1, c2) is

(x− c1)2 + (y − c2)2 = r2. (4.4)

The circle is uniquely determined by r, c1, and c2, so these are the parameters that should be

solved for in a least squares formulation of the problem. However, (4.4) is not linear in any of these

variables.

(x− c1)2 + (y − c2)2 = r2

x2 − 2c1x+ c21 + y2 − 2c2y + c22 = r2

x2 + y2 = 2c1x+ 2c2y + r2 − c21 − c22 (4.5)

The quadratic terms x2 and y2 are acceptable because the points {(xk, yk)}mk=1 are given.

To eliminate the nonlinear terms in the unknown parameters r, c1, and c2, de�ne a new variable

c3 = r2 − c21 − c22. Then for each point (xk, yk), (4.5) becomes

2c1xk + 2c2yk + c3 = x2k + y2k.

These m equations are linear in c1, c2, and c3, and can be written as the linear system
2x1 2y1 1

2x2 2y2 1
...

...
...

2xm 2ym 1

 c1
c2
c3

 =

x21 + y21
x22 + y22

...

x2m + y2m

 . (4.6)

After solving for the least squares solution, r can be recovered with the relation r =
√
c21 + c22 + c3.

Finally, plotting a circle is best done with polar coordinates. Using the same variables as before, the

circle can be represented in polar coordinates by setting

x = r cos(θ) + c1, y = r sin(θ) + c2, θ ∈ [0, 2π]. (4.7)

To plot the circle, solve the least squares system for c1, c2, and r, de�ne an array for θ, then use

(4.7) to calculate the coordinates of the points the circle.

7

Load some data and construct the matrix A and the vector b.

>>> xk, yk = np.load("circle.npy").T

>>> A = np.column_stack((2*xk, 2*yk, np.ones_like(xk)))

>>> b = xk**2 + yk**2

Calculate the least squares solution and solve for the radius.

>>> c1, c2, c3 = la.lstsq(A, b)[0]

>>> r = np.sqrt(c1**2 + c2**2 + c3)

Plot the circle using polar coordinates.

>>> theta = np.linspace(0, 2*np.pi, 200)

>>> x = r*np.cos(theta) + c1

>>> y = r*np.sin(theta) + c2

>>> plt.plot(x, y) # Plot the circle.

>>> plt.plot(xk, yk, 'k*') # Plot the data points.

>>> plt.axis("equal")

4 2 0 2 4 6 8 10

2

0

2

4

6

Problem 4. The general equation for an ellipse is

ax2 + bx+ cxy + dy + ey2 = 1.

Write a function that calculates the parameters for the ellipse that best �ts the data in the

�le ellipse.npy. Plot the original data points and the ellipse together, using the following

function to plot the ellipse.

def plot_ellipse(a, b, c, d, e):

"""Plot an ellipse of the form ax^2 + bx + cxy + dy + ey^2 = 1."""

theta = np.linspace(0, 2*np.pi, 200)

cos_t, sin_t = np.cos(theta), np.sin(theta)

8 Lab 4. Least Squares and Computing Eigenvalues

A = a*(cos_t**2) + c*cos_t*sin_t + e*(sin_t**2)

B = b*cos_t + d*sin_t

r = (-B + np.sqrt(B**2 + 4*A)) / (2*A)

plt.plot(r*cos_t, r*sin_t, lw=2)

plt.gca().set_aspect("equal", "datalim")

Computing Eigenvalues
The eigenvalues of an n×n matrix A are the roots of its characteristic polynomial det(A−λI). Thus,
�nding the eigenvalues of A amounts to computing the roots of a polynomial of degree n. However,

for n ≥ 5, it is provably impossible to �nd an algebraic closed-form solution to this problem.4 In

addition, numerically computing the roots of a polynomial is a famously ill-conditioned problem,

meaning that small changes in the coe�cients of the polynomial (brought about by small changes

in the entries of A) may yield wildly di�erent results. Instead, eigenvalues must be computed with

iterative methods.

The Power Method

The dominant eigenvalue of the n × n matrix A is the unique eigenvalue of greatest magnitude, if

such an eigenvalue exists. The power method iteratively computes the dominant eigenvalue of A and

its corresponding eigenvector.

Begin by choosing a vector x0 such that ‖x0‖2 = 1, and de�ne

xk+1 =
Axk

‖Axk‖2
.

If A has a dominant eigenvalue λ, and if the projection of x0 onto the subspace spanned by the

eigenvectors corresponding to λ is nonzero, then the sequence of vectors (xk)
∞
k=0 converges to an

eigenvector x of A corresponding to λ.

Since x is an eigenvector of A, Ax = λx. Left multiplying by xT on each side results in

xTAx = λxTx, and hence λ = xTAx
xTx

. This ratio is called the Rayleigh quotient. However, since each

xk is normalized, xTx = ‖x‖22 = 1, so λ = xTAx.

The entire algorithm is summarized below.

Algorithm 4.1

1: procedure PowerMethod(A)

2: m,n← shape(A) . A is square so m = n.

3: x0 ← random(n) . A random vector of length n

4: x0 ← x0/‖x0‖2 . Normalize x0

5: for k = 0, 1, . . . , N − 1 do

6: xk+1 ← Axk

7: xk+1 ← xk+1/‖xk+1‖2
8: return xT

NAxN , xN

4This result, called Abel's impossibility theorem, was �rst proven by Niels Heinrik Abel in 1824.

9

The power method is limited by a few assumptions. First, not all square matrices A have

a dominant eigenvalue. However, the Perron-Frobenius theorem guarantees that if all entries of

A are positive, then A has a dominant eigenvalue. Second, there is no way to choose an x0 that is

guaranteed to have a nonzero projection onto the span of the eigenvectors corresponding to λ, though

a random x0 will almost surely satisfy this condition. Even with these assumptions, a rigorous proof

that the power method converges is most convenient with tools from spectral calculus.

Problem 5. Write a function that accepts an n×n matrix A, a maximum number of iterations

N , and a stopping tolerance tol. Use Algorithm 4.1 to compute the dominant eigenvalue of A

and a corresponding eigenvector. Continue the loop in step 5 until either ‖xk+1 − xk‖2 is less

than the tolerance tol, or until iterating the maximum number of times N .

Test your function on square matrices with all positive entries, verifying that Ax = λx.

Use SciPy's eigenvalue solver, scipy.linalg.eig(), to compute all of the eigenvalues and

corresponding eigenvectors of A and check that λ is the dominant eigenvalue of A.

Construct a random matrix with positive entries.

>>> A = np.random.random((10,10))

Compute the eigenvalues and eigenvectors of A via SciPy.

>>> eigs, vecs = la.eig(A)

Get the dominant eigenvalue and eigenvector of A.

The eigenvector of the kth eigenvalue is the kth column of 'vecs'.

>>> loc = np.argmax(eigs)

>>> lamb, x = eigs[loc], vecs[:,loc]

Verify that Ax = lambda x.

>>> np.allclose(A @ x, lamb * x)

True

The QR Algorithm

An obvious shortcoming of the power method is that it only computes one eigenvalue and eigenvector.

The QR algorithm, on the other hand, attempts to �nd all eigenvalues of A.

Let A0 = A, and for arbitrary k let QkRk = Ak be the QR decomposition of Ak. Since A is

square, so are Qk and Rk, so they can be recombined in reverse order:

Ak+1 = RkQk.

This recursive de�nition establishes an important relation between the Ak:

Q−1k AkQk = Q−1k (QkRk)Qk = (Q−1k Qk)(RkQk) = Ak+1.

Thus, Ak is orthonormally similar to Ak+1, and similar matrices have the same eigenvalues. The

series of matrices (Ak)
∞
k=0 converges to the block matrix

10 Lab 4. Least Squares and Computing Eigenvalues

S =

S1 ∗ · · · ∗

0 S2
. . .

...
...

. . .
. . . ∗

0 · · · 0 Sm

 . For example, S =

s1 ∗ ∗ · · · ∗
0 s2,1 s2,2 · · · ∗

s2,3 s2,4 · · · ∗
. . .

...

sm

 .

Each Si is either a 1×1 or 2×2 matrix.5 In the example above on the right, since the �rst subdiagonal

entry is zero, S1 is the 1× 1 matrix with a single entry, s1. But as s2,3 is not zero, S2 is 2× 2.

Since S is block upper triangular, its eigenvalues are the eigenvalues of its diagonal Si blocks.

Then because A is similar to each Ak, those eigenvalues of S are the eigenvalues of A.

When A has real entries but complex eigenvalues, 2× 2 Si blocks appear in S. Finding eigen-

values of a 2× 2 matrix is equivalent to �nding the roots of a 2nd degree polynomial,

det(Si − λI) =
∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc), (4.8)

which has a closed form solution via the quadratic equation. This implies that complex eigenvalues

come in conjugate pairs.

Hessenberg Preconditioning

The QR algorithm works more accurately and e�ciently on matrices that are in upper Hessenberg

form, as upper Hessenberg matrices are already close to triangular. Furthermore, if H = QR is the

QR decomposition of upper HessenbergH then RQ is also upper Hessenberg, so the almost-triangular

form is preserved at each iteration. Putting a matrix in upper Hessenberg form before applying the

QR algorithm is called Hessenberg preconditioning.

With preconditioning in mind, the entire QR algorithm is as follows.

Algorithm 4.2

1: procedure QR_Algorithm(A, N)

2: m,n← shape(A)

3: S ← hessenberg(A) . Put A in upper Hessenberg form.

4: for k = 0, 1, . . . , N − 1 do

5: Q,R← S . Get the QR decomposition of Ak.

6: S ← RQ . Recombine Rk and Qk into Ak+1.

7: eigs ← [] . Initialize an empty list of eigenvalues.

8: i← 0

9: while i < n do

10: if Si is 1× 1 then

11: Append the only entry si of Si to eigs

12: else if Si is 2× 2 then

13: Calculate the eigenvalues of Si

14: Append the eigenvalues of Si to eigs

15: i← i+ 1

16: i← i+ 1 . Move to the next Si.

17: return eigs

5If all of the Si are 1× 1 matrices, then the upper triangular S is called the Schur form of A. If some of the Si are

2× 2 matrices, then S is called the real Schur form of A.

11

Problem 6. Write a function that accepts an n × n matrix A, a number of iterations N ,

and a tolerance tol. Use Algorithm 4.2 to implement the QR algorithm with Hessenberg

preconditioning, returning the eigenvalues of A.

Consider the following implementation details.

� Use scipy.linalg.hessenberg() or your own Hessenburg algorithm to reduce A to

upper Hessenberg form in step 3.

� The loop in step 4 should run for N total iterations.

� Use scipy.linalg.qr() or one of your own QR factorization routines to compute the

QR decomposition of S in step 5. Note that since S is in upper Hessenberg form, Givens

rotations are the most e�cient way to produce Q and R.

� Assume that Si is 1× 1 in step 10 if one of two following criteria hold:

� Si is the last diagonal entry of S.

� The absolute value of element below the ith main diagonal entry of S (the lower left

element of the 2× 2 block) is less than tol.

� If Si is 2 × 2, use the quadratic formula and (4.8) to compute its eigenvalues. Use the

function cmath.sqrt() to correctly compute the square root of a negative number.

Test your function on small random symmetric matrices, comparing your results to SciPy's

scipy.linalg.eig(). To construct a random symmetric matrix, note that A + AT is always

symmetric.

Note

Algorithm 4.2 is theoretically sound, but can still be greatly improved. Most modern computer

packages instead use the implicit QR algorithm, an improved version of the QR algorithm, to

compute eigenvalues.

For large matrices, there are other iterative methods besides the power method and the

QR algorithm for e�ciently computing eigenvalues. They include the Arnoldi iteration, the

Jacobi method, the Rayleigh quotient method, and others.

12 Lab 4. Least Squares and Computing Eigenvalues

Additional Material
Variations on the Linear Least Squares Problem

If W is an n× n is symmetric positive-de�nite matrix, then the function ‖ · ‖W 2 : Rn → R given by

‖x‖W 2 = ‖Wx‖2 =
√
xTWTWx

de�nes a norm and is called a weighted 2-norm. Given the overdetermined system Ax = b, the

problem of choosing x̂ to minimize ‖Ax̂ − b‖W 2 is called a weighted least squares (WLS) problem.

This problem has a slightly di�erent set of normal equations,

ATWTWAx̂ = ATWTWb.

However, letting C =WA and z =Wb, this equation reduces to the usual normal equations,

CTCx̂ = CTz,

so a WLS problem can be solved in the same way as an ordinary least squares (OLS) problem.

Weighted least squares is useful when some points in a data set are more important than others.

Typically W is chosen to be a diagonal matrix, and each positive diagonal entry Wi,i indicate how

much weight should be given to the ith data point. For example, Figure 4.2a shows OLS and WLS

�ts of an exponential curve y = aekx to data that gets more sparse as x increases, where the matrix

W is chosen to give more weight to the data with larger x values.

Alternatively, the least squares problem can be formulated with other common vector norms,

but such problems cannot be solved via the normal equations. For example, minimizing ‖Ax−b‖1 or
‖Ax−b‖∞ is usually done by solving an equivalent linear program, a type of constrained optimization

problem. These norms may be better suited to a particular application than the regular 2-norm.

Figure 4.2b illustrates how di�erent norms give slightly di�erent results in the context of Problem 4.

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

200

400

600

800 OLS
WLS
data

(a) Ordinary and weighted least squares �ts for

exponential data.

4 2 0 2 4
2

1

0

1

2

3

4

5
|| ||2 fit
|| ||1 fit

|| || fit
data

(b) Best �ts for elliptical data with respect to

di�erent vector norms.

Figure 4.2: Variations on the ordinary least squares problem.

The Inverse Power Method

The major drawback of the power method is that it only computes a single eigenvector-eigenvalue

pair, and it is always the eigenvalue of largest magnitude. The inverse power method, sometimes

simply called the inverse iteration, is a way of computing an eigenvalue that is closest in magnitude

to an initial guess. They key observation is that if λ is an eigenvalue of A, then 1/(λ − µ) is an

eigenvalue of (A − µI)−1, so applying the power method to (A − µI)−1 yields the eigenvalue of A

that is closest in magnitude to µ.

13

The inverse power method is more expensive than the regular power method because at each

iteration, instead of a matrix-vector multiplication (step 6 of Algorithm 4.1), a system of the form

(A− µI)x = b must be solved. To speed this step up, start by taking the LU or QR factorization of

A− µI before the loop, then use the factorization and back substitution to solve the system quickly

within the loop. For instance, if QR = A− µI, then since Q−1 = QT,

b = (A− µI)x = QRx ⇔ Rx = QTb,

which is a triangular system. This version of the algorithm is described below.

Algorithm 4.3

1: procedure InversePowerMethod(A, µ)

2: m,n← shape(A)

3: x0 ← random(n)

4: x0 ← x0/‖x0‖
5: Q,R← A− µI . Factor A− µI with la.qr().

6: for k = 0, 1, 2, . . . , N − 1 do

7: Solve Rxk+1 = QTxk . Use la.solve_triangular().

8: xk+1 ← xk+1/‖xk+1‖
9: return xT

NAxN , xN

It is worth noting that the QR algorithm can be improved with a similar technique: instead of

computing the QR factorization of Ak, factor the shifted matrix Ak − µkI, where µk is a guess for

an eigenvalue of A, and unshift the recombined factorization accordingly. That is, compute

QkRk = Ak − µkI,

Ak+1 = RkQk + µkI.

This technique yields the single-shift QR algorithm. Another variant, the practical QR algorithm, uses

intelligent shifts and recursively operates on smaller blocks ofAk+1 where possible. See [QSS10, TB97]

for further discussion.

14 Lab 4. Least Squares and Computing Eigenvalues

Bibliography

[QSS10] Al�o Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37.

Springer Science & Business Media, 2010. [13]

[TB97] Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1997. [13]

15

	Least Squares and Computing Eigenvalues
	Bibliography

