
6 The Discrete Fourier
Transform

Lab Objective: The analysis of periodic functions has many applications in pure and applied

mathematics, especially in settings dealing with sound waves. The Fourier transform provides a way

to analyze such periodic functions. In this lab, we introduce how to work with digital audio signals

in Python, implement the discrete Fourier transform, and use the Fourier transform to detect the

frequencies present in a given sound wave. We strongly recommend completing the exercises in a

Jupyter Notebook.

Digital Audio Signals
Sound waves have two important characteristics: frequency, which determines the pitch of the sound,

and intensity or amplitude, which determines the volume of the sound. Computers use digital audio

signals to approximate sound waves. These signals have two key components: sample rate, which

relates to the frequency of sound waves, and samples, which measure the amplitude of sound waves

at a speci�c instant in time.

To see why the sample rate is necessary, consider an array with samples from a sound wave. The

sound wave can be arbitrarily stretched or compressed to make a variety of sounds. If compressed,

the sound becomes shorter and has a higher pitch. Similarly, the same set of samples with a lower

sample rate becomes stretched and has a lower pitch.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

(a) The plot of tada.wav.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

(b) Compressed plot of tada.wav.

Figure 6.1: Plots of the same set of samples from a sound wave with varying sample rates. The plot

on the left is the plot of the samples with the original sample rate. The sample rate of the plot on

the right has been doubled, resulting in a compression of the actual sound when played back.

1

2 Lab 6. The Discrete Fourier Transform

Given the rate at which a set of samples is taken, the wave can be reconstructed exactly as

it was recorded. In most applications, this sample rate is measured in Hertz (Hz), the number of

samples taken per second. The standard rate for high quality audio is 44100 equally spaced samples

per second, or 44.1 kHz.

Wave File Format

One of the most common audio �le formats across operating systems is the wave format, also called

wav after its �le extension. SciPy has built-in tools to read and create wav �les. To read a wav �le,

use scipy.io.wavfile.read(). This function returns the signal's sample rate and its samples.

Read from the sound file.

>>> from scipy.io import wavfile

>>> rate, samples = wavfile.read("tada.wav")

Sound waves can be visualized by plotting time against the amplitude of the sound, as in Figure

6.1. The amplitude of the sound at a given time is just the value of the sample at that time. Since

the sample rate is given in samples per second, the length of the sound wave in seconds is found by

dividing the number of samples by the sample rate:

num samples

sample rate
=

num samples

num samples/second
= second. (6.1)

Problem 1. Write a SoundWave class for storing digital audio signals.

1. The constructor should accept an integer sample rate and an array of samples. Store each

input as an attribute.

2. Write a method that plots the stored sound wave. Use (6.1) to correctly label the x-axis

in terms of seconds, and set the y-axis limits to [−32768, 32767] (the reason for this is

discussed in the next section).

Use SciPy to read tada.wav, then instantiate a corresponding SoundWave object and display

its plot. Compare your plot to Figure 6.1a.

Scaling

To write to a wav �le, use scipy.io.wavfile.write(). This function accepts the name of the �le

to write to, the sample rate, and the array of samples as parameters.

>>> import numpy as np

Write a 2-second random sound wave sampled at a rate of 44100 Hz.

>>> samples = np.random.randint(-32768, 32767, 88200, dtype=np.int16)

>>> wavfile.write("white_noise.wav", 44100, samples)

For scipy.io.wavfile.write() to correctly create a wav �le, the samples must be one of four

numerical datatypes: 32-bit �oating point (np.float32), 32-bit integers (np.int32), 16-bit integers

3

(np.int16), or 8-bit unsigned integers (np.uint8). If samples of a di�erent type are passed into the

function, it may still write a �le, but the sound will likely be distorted in some way. In this lab, we

only work with 16-bit integer samples, unless otherwise speci�ed.

A 16-bit integer is an integer between −32768 and 32767, inclusive. If the elements of an array

of samples are not all within this range, the samples must be scaled before writing to a �le: multiply

the samples by 32767 (the largest number in the 16-bit range) and divide by the largest sample

magnitude. This ensures the most accurate representation of the sound and sets it to full volume.

np.int16

((
original samples

max(|original samples|)

)
× 32767

)
= scaled samples (6.2)

Because 16-bit integers can only store numbers within a certain range, it is important to multiply

the original samples by the largest number in the 16-bit range after dividing by the largest sample

magnitude. Otherwise, the results of the multiplication may be outside the range of integers that

can be represented, causing over�ow errors. Also, samples may sometimes contain complex values,

especially after some processing. Make sure to scale and export only the real part (use the real

attribute of the array).

Note

The IPython API includes a tool for embedding sounds in a Jupyter Notebook. The function

IPython.display.Audio() accepts either a �le name or a sample rate (rate) and an array of

samples (data); calling the function generates an interactive music player in the Notebook.

Achtung!

Turn the volume down before listening to any of the sounds in this lab.

Problem 2. Add a method to the SoundWave class that accepts a �le name and a boolean

force. Write to the speci�ed �le using the stored sample rate and the array of samples. If the

array of samples does not have np.int16 as its data type, or if force is True, scale the samples

as in (6.2) before writing the �le.

Use your method to create two new �les that contains the same sound as tada.wav: one

4 Lab 6. The Discrete Fourier Transform

without scaling, and one with scaling (use force=True). Use IPython.display.Audio() to

display tada.wav and the new �les. All three �les should sound identical, except the scaled �le

should be louder than the other two.

Generating Sounds
Sinusoidal waves correspond to pure frequencies, like a single note on the piano. Recall that the

function sin(x) has a period of 2π. To create a speci�c tone for 1 second, we sample from the

sinusoid with period 1,

f(x) = sin(2πxk),

where k is the desired frequency. According to (6.1), generating a sound that lasts for s seconds at

a sample rate r requires rs equally spaced samples in the interval [0, s].

Problem 3. Write a function that accepts �oats k and s. Create a SoundWave instance con-

taining a tone with frequency k that lasts for s seconds. Use a sample rate of r = 44100.

The following table shows some frequencies that correspond to common notes. Octaves

of these notes are obtained by doubling or halving these frequencies.

Note Frequency (Hz)

A 440

B 493.88

C 523.25

D 587.33

E 659.25

F 698.46

G 783.99

A 880

Use your function to generate an A tone lasting for 2 seconds.

Problem 4. Digital audio signals can be combined by addition or concatenation. Adding

samples overlays tones so they play simultaneously; concatenated samples plays one set of

samples after the other with no overlap.

1. Implement the __add__() magic method for the SoundWave class so that if A and B

are SoundWave instances, A + B creates a new SoundWave object whose samples are the

element-wise sum of the samples from A and B. Raise a ValueError if the sample arrays

from A and B are not the same length.

Use your method to generate a three-second A minor chord (A, C, and E together).

2. Implement the __rshift__() magic methoda for the SoundWave class so that if A and B

are SoundWave instances, A >> B creates a new SoundWave object whose samples are the

concatenation of the samples from A, then the samples from B. Raise a ValueError if the

sample rates from the two objects are not equal.

(Hint: np.concatenate(), np.hstack(), and/or np.append() may be useful.)

5

Use your method to generate the arpeggio A→ C→ E, where each pitch lasts one second.

Consider using these two methods to produce elementary versions of some simple tunes.

aThe >> operator is a bitwise shift operator and is usually reserved for operating on binary numbers.

The Discrete Fourier Transform
As with the chords generated above, all sound waves are sums of varying amounts of di�erent fre-

quencies (pitches). In the case of the discrete samples f =
[
f0 f1 · · · fn−1

]T
that we have worked

with thus far, each fi gives information about the amplitude of the sound wave at a speci�c instant

in time. However, sometimes it is useful to �nd out what frequencies are present in the sound wave

and in what amount.

We can write the sound wave sample as a sum

f =

n−1∑
k=0

ckwn
(k), (6.3)

where {w(k)
n }n−1

k=0 , called the discrete Fourier basis, represents various frequencies. The coe�cients

ck represent the amount of each frequency present in the sound wave.

The discrete Fourier transform (DFT) is a linear transformation that takes f and �nds the

coe�cients c =
[
c0 c1 · · · cn−1

]T
needed to write f in this frequency basis. Later in the lab, we

will convert the index k to a value in Hertz to �nd out what frequency ck corresponds to.

Because the sample f was generated by taking n evenly spaced samples of the sound wave, we

generate the basis {w(k)
n }n−1

k=0 by taking n evenly spaced samples of the frequencies represented by

the oscillating functions {e−2πikt/n}n−1
k=0 . (Note that i =

√
−1, the imaginary unit, is represented as

1j in Python). This yields

w(k)
n =

[
ω0
n ω−k

n · · · ω
−(n−1)k
n

]T
, (6.4)

where ωn = e2πi/n.

The DFT is then represented by the change of basis matrix

Fn =
1

n

[
w0
n w1

n w2
n · · · wn−1

n

]
=

1

n



1 1 1 · · · 1

1 ω−1
n ω−2

n · · · ω
−(n−1)
n

1 ω−2
n ω−4

n · · · ω
−2(n−1)
n

...
...

...
. . .

...

1 ω
−(n−1)
n ω

−2(n−1)
n · · · ω

−(n−1)2

n

 , (6.5)

and we can take the DFT of f by calculating

c = Fnf . (6.6)

Note that the DFT depends on the number of samples n, since the discrete Fourier basis we use

depends on the number of samples taken. The larger n is, the closer the frequencies approximated

by the DFT will be to the actual frequencies present in the sound wave.

6 Lab 6. The Discrete Fourier Transform

Achtung!

There are several di�erent conventions for de�ning the DFT. For example, instead of (6.6),

scipy.fftpack.fft() uses the formula

c = nFnf ,

where Fn is as given (6.5). Denoting this version of the DFT as F̂nf = ĉ, we have nFn = F̂n
and nc = ĉ. The conversion is easy, but it is very important to be aware of which convention

a particular implementation of the DFT uses.

Problem 5. Write a function that accepts an array f of samples. Use 6.6 to calculate the

coe�cients c of the DFT of f . Include the 1/n scaling in front of the sum.

Test your implementation on small, random arrays against scipy.fftpack.fft(), scaling

your output c to match SciPy's output ĉ. Once your function is working, try to optimize it so

that the entire array of coe�cients is calculated in the one line.

(Hint: Use array broadcasting.)

The Fast Fourier Transform

Calculating the DFT of a vector of n samples using only (6.6) is at leastO(n2), which is incredibly slow

for realistic sound waves. Fortunately, due to its inherent symmetry, the DFT can be implemented

as a recursive algorithm by separating the computation into even and odd indices. This method of

calculating the DFT is called the fast Fourier transform (FFT) and runs in O(n log n) time.

Algorithm 6.1 The fast Fourier transform for arrays with 2a entries for some a ∈ N.
1: procedure simple_fft(f , N)

2: procedure split(g)

3: n← size(g)

4: if n ≤ N then

5: return nFng . Use the function from Problem 5 for small enough g.

6: else

7: even ← SPLIT(g::2) . Get the DFT of every other entry of g, starting from 0.

8: odd ← SPLIT(g1::2) . Get the DFT of every other entry of g, starting from 1.

9: z← zeros(n)

10: for k = 0, 1, . . . , n− 1 do . Calculate the exponential parts of the sum.

11: zk ← e−2πik/n

12: m← n // 2 . Get the middle index for z (// is integer division).

13: return [even + z:m�odd, even + zm:�odd] . Concatenate two arrays of length m.

14: return SPLIT(f) / size(f)

Note that the base case in lines 4�5 of Algorithm 6.1 results from setting n = 1 in (6.6), yielding

the single coe�cient c0 = g0. The � in line 13 indicates the component-wise product

f � g =
[
f0g0 f1g1 · · · fn−1gn−1

]T
,

7

which is also called the Hadamard product of f and g.

This algorithm performs signi�cantly better than the naïve implementation of the DFT, but

the simple version described in Algorithm 6.1 only works if the number of original samples is exactly

a power of 2. SciPy's FFT routines avoid this problem by padding the sample array with zeros until

the size is a power of 2, then executing the remainder of the algorithm from there. Of course, SciPy

also uses various other tricks to further speed up the computation.

Problem 6. Write a function that accepts an array f of n samples where n is a power of 2.

Use Algorithm 6.1 to calculate the DFT of f .

(Hint: eliminate the loop in lines 10�11 with np.arange() and array broadcasting, and use

np.concatenate() or np.hstack() for the concatenation in line 13.)

Test your implementation on random arrays against scipy.fftpack.fft(), scaling your

output c to match SciPy's output ĉ. Time your function from Problem 5, this function, and

SciPy's function on an array with 8192 entries.

(Hint: Use %time in Jupyter Notebook to time a single line of code.)

Visualizing the DFT
The graph of the DFT of a sound wave is useful in a variety of applications. While the graph of

the sound in the time domain gives information about the amplitude (volume) of a sound wave at a

given time, the graph of the DFT shows which frequencies (pitches) are present in the sound wave.

Plotting a sound's DFT is referred to as plotting in the frequency domain.

As a simple example, the single-tone notes generated by the function in Problem 3 contain only

one frequency. For instance, Figure 6.2a graphs the DFT of an A tone. However, this plot shows two

frequency spikes, despite there being only one frequency present in the actual sound. This is due to

symmetries inherent to the DFT; for frequency detection, the second half of the plot can be ignored

as in Figure 6.2b.

0 10000 20000 30000 40000
Frequency (Hz)

0

10000

20000

30000

40000

M
ag

ni
tu

de

(a) The DFT of an A tone with symmetries.

0 5000 10000 15000 20000
Frequency (Hz)

0

10000

20000

30000

40000

M
ag

ni
tu

de

(b) The DFT of an A tone without symmetries.

Figure 6.2: Plots of the DFT with and without symmetries. Notice that the x-axis of the symmetrical

plot on the left goes up to 44100 (the sample rate of the sound wave) while the x-axis of the non-

symmetric plot on the right goes up to only 22050 (half the sample rate). Also notice that the spikes

occur at 440 Hz and 43660 Hz (which is 44100− 440).

The DFT of a more complicated sound wave has many frequencies, each of which corresponds to

8 Lab 6. The Discrete Fourier Transform

a di�erent tone present in the sound wave. The magnitude of the coe�cients indicates a frequency's

in�uence in the sound wave; a greater magnitude means that the frequency is more in�uential.

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
M

ag
ni

tu
de

1e7

Figure 6.3: The discrete Fourier transform of tada.wav. Each spike in the graph corresponds to a

frequency present in the sound wave. Since the sample rate of tada.wav is 22050 Hz, the plot of its

DFT without symmetries only goes up to 11025 Hz, half of its sample rate.

Plotting Frequencies

Since the DFT represents the frequency domain, the x-axis of a plot of the DFT should be in terms

of Hertz, which has units 1/s. In other words, to plot the magnitudes of the Fourier coe�cients

against the correct frequencies, we must convert the frequency index k of each ck to Hertz. This can

be done by multiplying the index by the sample rate and dividing by the number of samples:

k

num samples
× num samples

second
=

k

second
. (6.7)

In other words, kr/n = v, where r is the sample rate, n is the number of samples, and v is the

resulting frequency.

Problem 7. Modify your SoundWave plotting method from Problem 1 so that it accepts a

boolean defaulting to False. If the boolean is True, take the DFT of the stored samples and

plot�in a new subplot�the frequencies present on the x-axis and the magnitudes of those

frequencies (use np.abs() to compute the magnitude) on the y-axis. Only display the �rst half

of the plot (as in Figures 6.2b and 6.2b), and use (6.7) to adjust the x-axis so that it correctly

shows the frequencies in Hertz. Use SciPy to calculate the DFT.

Display the DFT plots of the A tone and the A minor chord from Problem 4. Compare

your results to Figures 6.2a and 6.4.

9

0 5000 10000 15000 20000
Frequency (Hz)

0

10000

20000

30000

40000

M
ag

ni
tu

de

Figure 6.4: The DFT of the A minor chord.

If the frequencies present in a sound are already known before plotting its DFT, the plot may

be interesting, but little new information is actually revealed. Thus, the main applications of the

DFT involve sounds in which the frequencies present are unknown. One application in particular is

sound �ltering, which will be explored in greater detail in a subsequent lab. The �rst step in �ltering

a sound is determining the frequencies present in that sound by taking its DFT.

Consider the DFT of the A minor chord in Figure 6.4. This graph shows that there are three

main frequencies present in the sound. To determine what those frequencies are, �nd which indices

of the array of DFT coe�cients have the three largest values, then scale these indices the same way

as in (6.7) to translate the indices to frequencies in Hertz.

Problem 8. The �le mystery_chord.wav contains an unknown chord. Use the DFT and the

frequency table in Problem 3 to determine the individual notes that are present in the sound.

(Hint: np.argsort() may be useful.)

	The Discrete Fourier Transform

