
8 Differentiation

Lab Objective: Derivatives are central in many applications. Depending on the application and

on the available information, the derivative may be calculated symbolically, numerically, or with

di�erentiation software. In this lab we explore these three ways to take a derivative, discuss what

settings they are each appropriate for, and demonstrate their strengths and weaknesses.

Symbolic Differentiation
The derivative of a known mathematical function can be calculated symbolically with SymPy. This

method is the most precise way to take a derivative, but it is computationally expensive and requires

knowing the closed form formula of the function. Use sy.diff() to take a symbolic derivative.

>>> import sympy as sy

>>> x = sy.symbols('x')

>>> sy.diff(x**3 + x, x) # Differentiate x^3 + x with respect to x.

3*x**2 + 1

Problem 1. Write a function that de�nes f(x) = (sin(x) + 1)sin(cos(x)) and takes its symbolic

derivative with respect to x using SymPy. Lambdify the resulting function so that it can accept

NumPy arrays and return the resulting function handle.

To check your function, plot f and its derivative f ′ over the domain [−π, π]. It may be

helpful to move the bottom spine to 0 so you can see where the derivative crosses the x-axis.

>>> from matplotlib import pyplot as plt

>>> ax = plt.gca()

>>> ax.spines["bottom"].set_position("zero")

1



2 Lab 8. Differentiation

Numerical Differentiation
One de�nition for the derivative of a function f : R→ R at a point x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Since this de�nition relies on h approaching 0, choosing a small, �xed value for h approximates f ′(x0):

f ′(x0) ≈ f(x0 + h)− f(x0)

h
. (8.1)

This approximation is called the �rst order forward di�erence quotient. Using the points x0 and

x0 − h in place of x0 + h and x0, respectively, results in the �rst order backward di�erence quotient,

f ′(x0) ≈ f(x0)− f(x0 − h)

h
. (8.2)

Forward di�erence quotients use values of f at x0 and points greater than x0, while backward

di�erence quotients use the values of f at x0 and points less than x0. A centered di�erence quotient

uses points on either side of x0, and typically results in a better approximation than the one-sided

quotients. Combining (7.1) and (7.2) yields the second order centered di�erence quotient,

f ′(x0) =
1

2
f ′(x0) +

1

2
f ′(x0) ≈ f(x0 + h)− f(x0)

2h
+
f(x0)− f(x0 − h)

2h
=
f(x0 + h)− f(x0 − h)

2h
.

* * * * * * * * * * *

f ′(x̄)

Forward Di�erence

f ′(x̂)

Centered Di�erence

f ′(x̃)

Backward Di�erence

x̄ x̄+ h x̂− h x̂ x̂+ h x̃− h x̃

Figure 8.1

Note

The �nite di�erence quotients in this section all approximate the �rst derivative of a function.

The terms �rst order and second order refers to how quickly the approximation converges on

the actual value of f ′(x0) as h approaches 0, not to how many derivatives are being taken.

There are �nite di�erence quotients for approximating higher order derivatives, such as

f ′′ or f ′′′. For example, the centered di�erence quotient

f ′′(x0) ≈ f(x0 − h)− 2f(x0) + f(x0 + h)

h2

approximates the second derivative. This particular quotient is important for �nite di�erence

methods that approximate numerical solutions to some partial di�erential equations.



3

While we do not derive them here, there are other �nite di�erence quotients that use more

points to approximate the derivative, some of which are listed below. Using more points generally

results in better convergence properties.

Type Order Formula

Forward

1
f(x0+h)−f(x0)

h

2
−3f(x0)+4f(x0+h)−f(x0+2h)

2h

Backward

1
f(x0)−f(x0−h)

h

2
3f(x0)−4f(x0−h)+f(x0−2h)

2h

Centered

2
f(x0+h)−f(x0−h)

2h

4
f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)

12h

Table 8.1: Common �nite di�erence quotients for approximating f ′(x0).

Problem 2. Write a function for each of the �nite di�erence quotients listed in Table 7.1. Each

function should accept a function handle f , an array of points x, and a �oat h; each should

return an array of the di�erence quotients evaluated at each point in x.

To test your functions, approximate the derivative of f(x) = (sin(x) + 1)sin(cos(x)) at each

point of a domain over [−π, π]. Plot the results and compare them to the results of Problem 1.

Convergence of Finite Difference Quotients

Finite di�erence quotients are typically derived using Taylor's formula. This method also shows how

the accuracy of the approximation increases as h→ 0:

f(x0 + h) = f(x0) + f ′(x0)h+R2(h) =⇒ f(x0 + h)− f(x0)

h
− f ′(x0) =

R2(h)

h
, (8.3)

where R2(h) = h2
∫ 1

0
(1−t)f ′′(x0+th)dt. Thus the absolute error of the �rst order forward di�erence

quotient is ∣∣∣∣R2(h)

h

∣∣∣∣ = |h|
∣∣∣∣∫ 1

0

(1− t)f ′′(x0 + th) dt

∣∣∣∣ ≤ |h|∫ 1

0

|1− t||f ′′(x0 + th)| dt.



4 Lab 8. Differentiation

If f ′′ is continuous, then for any δ > 0, setting M = supx∈(x0−δ,x0+δ) f
′′(x) guarantees that∣∣∣∣R2(h)

h

∣∣∣∣ ≤ |h|∫ 1

0

Mdt = M |h| ∈O(h).

whenever |h| < δ. That is, the error decreases at the same rate as h. If h gets twice as small, the error

does as well. This is what is meant by a �rst order approximation. In a second order approximation,

the absolute error is O(h2), meaning that if h gets twice as small, the error gets four times smaller.

Note

The notation O(f(n)) is commonly used to describe the temporal or spatial complexity of an

algorithm. In that context, a O(n2) algorithm is much worse than a O(n) algorithm. However,

when referring to error, a O(h2) algorithm is better than a O(h) algorithm because it means

that the accuracy improves faster as h decreases.

Problem 3. Write a function that accepts a point x0 at which to compute the derivative of

f(x) = (sin(x) + 1)sin(cos(x)). Use your function from Problem 1 to compute the exact value of

f ′(x0). Then use each your functions from Problem 2 to get an approximate derivative f̃ ′(x0)

for h = 10−8, 10−7, . . . , 10−1, 1. Track the absolute error |f ′(x0) − f̃ ′(x0)| for each trial, then

plot the absolute error against h on a log-log scale (use plt.loglog()).

Instead of using np.linspace() to create an array of h values, use np.logspace(). This

function generates logarithmically spaced values between two powers of 10.

>>> import numpy as np

>>> np.logspace(-3, 0, 4) # Get 4 values from 1e-3 to 1e0.

array([ 0.001, 0.01 , 0.1 , 1. ])

For x0 = 1, your plot should resemble the following �gure.

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

h

10 12

10 10

10 8

10 6

10 4

10 2

100

Ab
so

lu
te

 E
rro

r

Order 1 Forward
Order 2 Forward
Order 1 Backward
Order 2 Backward
Order 2 Centered
Order 4 Centered



5

Achtung!

Mathematically, choosing smaller h values results in tighter approximations of f ′(x0). However,

Problem 3 shows that when h gets too small, the error stops decreasing. This numerical error

is due to the denominator in each �nite di�erence quotient becoming very small. The optimal

value of h is usually one that is small, but not too small.

Problem 4. The radar stations A and B, separated by the distance a = 500 m, track a plane

C by recording the angles α and β at one-second intervals. Your goal, back at air tra�c control,

is to determine the speed of the plane.a

Let the position of the plane at time t be given by (x(t), y(t)). The speed at time t is the

magnitude of the velocity vector, ‖ ddt (x(t), y(t))‖ =
√
x′(t)2 + y′(t)2. The closed forms of the

functions x(t) and y(t) are unknown (and may not exist at all), but we can still use numerical

methods to estimate x′(t) and y′(t). For example, at t = 3, the second order centered di�erence

quotient for x′(t) is

x′(3) ≈ x(3 + h)− x(3− h)

2h
=

1

2
(x(4)− x(2)).

In this case h = 1 since data comes in from the radar stations at 1 second intervals.

Successive readings for α and β at integer times t = 7, 8, . . . , 14 are stored in the �le

plane.npy. Each row in the array represents a di�erent reading; the columns are the observation

time t, the angle α (in degrees), and the angle β (also in degrees), in that order. The Cartesian

coordinates of the plane can be calculated from the angles α and β as follows.

x(α, β) = a
tan(β)

tan(β)− tan(α)
y(α, β) = a

tan(β) tan(α)

tan(β)− tan(α)
(8.4)

Load the data, convert α and β to radians, then compute the coordinates x(t) and y(t) at

each given t using 7.4. Approximate x′(t) and y′(t) using a �rst order forward di�erence

quotient for t = 7, a �rst order backward di�erence quotient for t = 14, and a second order

centered di�erence quotient for t = 8, 9, . . . , 13 (see Figure 7.1). Return the values of the speed√
x′(t)2 + y′(t)2 at each t.



6 Lab 8. Differentiation

(Hint: np.deg2rad() will be helpful.)

aThis problem is adapted from an exercise in [Kiu13].

Numerical Differentiation in Higher Dimensions

Finite di�erence quotients can also be used to approximate derivatives in higher dimensions. The

Jacobian matrix of a function f : Rn → Rm at a point x0 ∈ Rn is the m× n matrix J whose entries

are given by

Jij =
∂fi
∂xj

(x0).

For example, the Jacobian for a function f : R3 → R2 is de�ned by

J =
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

]
=

 ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

 , where f(x) =

[
f1(x)

f2(x)

]
, x =

 x1
x2
x3

 .
The di�erence quotients in this case resemble directional derivatives. The �rst order forward

di�erence quotient for approximating a partial derivative is

∂f

∂xj
(x0) ≈ f(x0 + hej)− f(x0)

h
,

where ej is the jth standard basis vector. The second order centered di�erence approximation is

∂f

∂xj
(x0) ≈ f(x0 + hej)− f(x0 − hej)

2h
. (8.5)

Problem 5. Write a function that accepts a function f : Rn → Rm, a point x0 ∈ Rn, and a

�oat h. Approximate the Jacobian matrix of f at x using the second order centered di�erence

quotient in (7.5).

(Hint: the standard basis vector ej is the jth column of the n× n identity matrix I.)

To test your function, de�ne a simple function like f(x, y) = [x2, x3 − y]T where the

Jacobian is easy to �nd analytically, then check the results of your function against SymPy or

your own scratch work.

Differentiation Software
Many machine learning algorithms and structures, especially neural networks, rely on the gradient of a

cost or objective function. To facilitate their research, several organizations have recently developed

Python packages for numerical di�erentiation. For example, the Harvard Intelligent Probabilistic

Systems Group (HIPS) started developing autograd in 2014 (https://github.com/HIPS/autograd)

and Google released tangent in 2017 (https://github.com/google/tangent). These tools are

incredibly robust: they can di�erentiate functions with NumPy routines,1 if statements, while

loops, and even recursion. We conclude with a brief introduction to Autograd.2

1See https://github.com/HIPS/autograd/blob/master/docs/tutorial.md for which features Autograd supports.
2Autograd is not included in Anaconda; install it with pip install autograd.

https://github.com/HIPS/autograd
https://github.com/google/tangent
https://github.com/HIPS/autograd/blob/master/docs/tutorial.md


7

Autograd's grad() accepts a scalar-valued function and returns its gradient as a function that

accepts the same parameters as the original. To support most of the NumPy features, Autograd

comes with its own thinly-wrapped version of Numpy, autograd.numpy. Import this version of

NumPy as anp to avoid confusion.

>>> from autograd import numpy as anp # Use autograd's version of NumPy.

>>> from autograd import grad

>>> g = lambda x: anp.exp(anp.sin(anp.cos(x)))

>>> dg = grad(g) # dg() is a callable function.

>>> dg(1.) # Use floats as input, not ints.

-1.2069777039799139

Functions that grad() produces do not support array broadcasting, meaning they do not accept

arrays as input. Autograd's elementwise_grad() returns functions that can accept arrays, like using

"numpy" as an argument in SymPy's sy.lambdify().

>>> from autograd import elementwise_grad

>>> pts = anp.array([1, 2, 3], dtype=anp.float)

>>> dg = elementwise_grad(g) # Calculate g'(x) with array support.

>>> dg(pts) # Evaluate g'(x) at each of the points.

array([-1.2069777 , -0.55514144, -0.03356146])

SymPy would have no trouble di�erentiating g(x) in these examples. However, Autograd can

also di�erentiate Python functions that look nothing like traditional mathematical functions. For

example, the following code computes the Taylor series of ex with a loop.

>>> from sympy import factorial

>>> def taylor_exp(x, tol=.0001):

... """Compute the Taylor series of e^x with terms greater than tol."""

... result, i, term = 0, 0, x

... while anp.abs(term) > tol:

... term = x**i / int(factorial(i))

... result, i = result + term, i + 1

... return result

...

>>> d_exp = grad(taylor_exp)

>>> print(d_exp(2., .1), d_exp(2., .0001))

7.26666666667 7.38899470899

Problem 6. The Chebyshev Polynomials satisfy the recursive relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x).

Write a function that accepts an array x and an integer n and recursively computes Tn(x). Use



8 Lab 8. Differentiation

Autograd and your �rst function to create a function for T ′n(x). Use this last function to plot

each T ′n(x) over the domain [−1, 1] for n = 0, 1, 2, 3, 4.

(Hint: Use anp.ones_like(x) to handle the case when n = 0.)

Problem 7. Let f(x) = (sin(x) + 1)sin(cos(x)) as in Problems 1 and 3. Write a function that

accepts an integer N and performs the following experiment N times.

1. Choose a random value x0.

2. Use your function from Problem 1 to calculate the �exact� value of f ′(x0). Time how long

the entire process takes, including calling your function (each iteration).

3. Time how long it takes to get an approximation f̃ ′(x0) of f ′(x0) using the fourth-order

centered di�erence quotient from Problem 3. Record the absolute error |f ′(x0)− f̃ ′(x0)|
of the approximation.

4. Time how long it takes to get an approximation f̄ ′(x0) of f ′(x0) using Autograd (calling

grad() every time). Record the absolute error |f ′(x0)− f̄ ′(x0)| of the approximation.

Plot the computation times versus the absolute errors on a log-log plot with di�erent

colors for SymPy, the di�erence quotient, and Autograd. For SymPy, assume an absolute error

of 1e-18 (since only positive values can be shown on a log plot).

For N = 200, your plot should resemble the following �gure. Note that SymPy has the

least error but the most computation time, and that the di�erence quotient takes the least

amount of time but has the most error. Autograd might be considered a �happy medium,� a

least for this problem.

10 4 10 3 10 2

Computation Time (seconds)

10 18

10 17

10 16

10 15

10 14

10 13

10 12

10 11

Ab
so

lu
te

 E
rro

r

SymPy
Difference Quotients
Autograd

Figure 8.2: Solution with N = 200.



9

Additional Material
More Autograd

For scalar-valued functions with multiple inputs, the parameter argnum speci�es the variable that

the derivative is computed with respect to. Providing a list for argnum gives several outputs.

>>> f = lambda x,y: 3*x*y + 2*y - x

# Take the derivative of f with respect to the first variable, x.

>>> dfdx = grad(f, argnum=0) # Should be dfdx(x,y) = 3y - 1,

>>> dfdx(5., 1.) # so dfdx(5,1) = 3 - 1 = 2.

2.0

# Take the gradient with respect to the second variable, y.

>>> dfdy = grad(f, argnum=1) # Should be dfdy(x,y) = 3x + 2,

>>> dfdy(5., 1.) # so dfdy(5,1) = 15 + 2 = 17.

17.0

# Get the full gradient.

>>> grad_f = grad(f, argnum=[0,1])

>>> anp.array(grad_f(5., 1.))

array([ 2., 17.])

Finally, Autograd's jacobian() can di�erentiate vector-valued functions.

>>> from autograd import jacobian

>>> f = lambda x: anp.array([x[0]**2, x[0]+x[1]])

>>> f_jac = jacobian(f)

>>> f_jac(anp.array([1., 1.]))

array([[ 2., 0.],

[ 1., 1.]])

Google Tangent

Google's tangent package is similar to Autograd, both in purpose and syntax. However, Tangent

di�erentiates code ahead of time, while Autograd waits until the last second to actually do any

calculations. Tangent also tends to be slightly faster than Autograd.

>>> import tangent # Install with 'pip install tangent'.

>>> def f(x): # Tangent does not support lambda functions,

... return x**2 - x + 3

...

>>> df = tangent.grad(f)

>>> df(10) # ...but the functions do accept integers.

19.0



10 Lab 8. Differentiation



Bibliography

[Kiu13] Jaan Kiusalaas. Numerical methods in engineering with Python 3. Cambridge university

press, 2013. [6]

11


	Differentiation
	Bibliography

