
13 The PageRank
Algorithm

Lab Objective: Many real-world systems�the internet, transportation grids, social media, and

so on�can be represented as graphs (networks). The PageRank algorithm is one way of ranking the

nodes in a graph by importance. Though it is a relatively simple algorithm, the idea gave birth to the

Google search engine in 1998 and has shaped much of the information age since then. In this lab we

implement the PageRank algorithm with a few di�erent approaches, then use it to rank the nodes of

a few di�erent networks.

The PageRank Model
The internet is a collection of webpages, each of which may have a hyperlink to any other page. One

possible model for a set of n webpages is a directed graph, where each node represents a page and

node j points to node i if page j links to page i. The corresponding adjacency matrix A satis�es

Aij = 1 if node j links to node i and Aij = 0 otherwise.

a

b c

d

A =

a b c d


a 0 0 0 0

b 1 0 1 0

c 1 0 0 1

d 1 0 1 0

Figure 13.1: A directed unweighted graph with four nodes, together with its adjacency matrix. Note

that the column for node b is all zeros, indicating that b is a sink�a node that doesn't point to any

other node.

If n users start on random pages in the network and click on a link every 5 minutes, which page

in the network will have the most views after an hour? Which will have the fewest? The goal of the

PageRank algorithm is to solve this problem in general, therefore determining how �important� each

webpage is.

Before diving into the mathematics, there is a potential problem with the model. What happens

if a webpage doesn't have any outgoing links, like node b in Figure 13.1? Eventually, all of the users

1

2 Lab 13. The PageRank Algorithm

will end up on page b and be stuck there forever. To obtain a more realistic model, modify each sink

in the graph by adding edges from the sink to every node in the graph. This means users on a page

with no links can start over by selecting a random webpage.

a

b c

d

Ã =

a b c d


a 0 1 0 0

b 1 1 1 0

c 1 1 0 1

d 1 1 1 0

Figure 13.2: Here the graph in Figure 13.1 has been modi�ed to guarantee that node b is no longer

a sink (the added links are blue). We denote the modi�ed adjacency matrix by Ã.

Now let pk(t) be the likelihood that a particular internet user is sur�ng webpage k at time t.

Suppose at time t+1, the user clicks on a link to page i. Then pi(t+1) can be computed by counting

the number of links pointing to page i, weighted by the total number of outgoing links for each node.

As an example, consider the graph in Figure 13.2. To get to page a at time t+ 1, the user had

to be on page b at time t. Since there are four outgoing links from page b, assuming links are chosen

with equal likelihood,

pa(t+ 1) =
1

4
pb(t).

Similarly, to get to page b at time t+1, the user had to have been on page a, b, or c at time t. Since

a has 3 outgoing edges, b has 4 outgoing edges, and c has 2 outgoing edges,

pb(t+ 1) =
1

3
pa(t) +

1

4
pb(t) +

1

2
pc(t).

The previous equations can be written in a way that hints at a more general linear form:

pa(t+ 1) = 0pa(t) +
1

4
pb(t) + 0pc(t) + 0pd(t),

pb(t+ 1) =
1

3
pa(t) +

1

4
pb(t) +

1

2
pc(t) + 0pd(t).

The coe�cients of the terms on the right hand side are precisely the entries of the ith row of the

modi�ed adjacency matrix Ã, divided by the jth column sum. In general, pi(t+ 1) satis�es

pi(t+ 1) =

n∑
j=1

Ãij
pj(t)∑n
k=1 Ãkj

. (13.1)

Note that the column sum
∑n

k=1 Ãkj in the denominator can never be zero since, after the �x in

Figure 13.2, none of the nodes in the graph are sinks.

Accounting for Boredom

The model in (13.1) assumes that the user can only click on links from their current page. It is more

realistic to assume that the user sometimes gets bored and randomly picks a new starting page. Let

3

0 ≤ ε ≤ 1, called the damping factor, be the probability that a user stays interested at step t. Then

the probability that the user gets bored at any time (and then chooses a new random page) is 1− ε,
and (13.1) becomes

pi(t+ 1) = ε

n∑
j=1

(
Ãij

pj(t)∑n
k=1 Ãkj

)
︸ ︷︷ ︸
User stayed interested and

clicked a link on the current page

+
1− ε
n

.︸ ︷︷ ︸
User got bored and
chose a random page

(13.2)

Note that (13.2) can be rewritten as the matrix equation

p(t+ 1) = εÂp(t) +
1− ε
n

1, (13.3)

where p(t) = [p1(t), p2(t), . . . , pn(t)]
T, 1 is a vector of n ones, and Â is the n× n matrix with entries

Âij =
Ãij∑

k=1 Ãkj

. (13.4)

In other words, Â is Ã normalized so that the columns each sum to 1. For the graph in Figure 13.2,

the matrix Â is given by

Â =

a b c d


a 0 1/4 0 0

b 1/3 1/4 1/2 0

c 1/3 1/4 0 1

d 1/3 1/4 1/2 0

. (13.5)

Problem 1. Write a class for representing directed graphs via their adjacency matrices. The

constructor should accept an n × n adjacency matrix A and a list of node labels (such as

[a, b, c, d]) defaulting to None. Modify A as in Figure 13.2 so that there are no sinks in

the corresponding graph, then calculate the Â from (13.4). Save Â and the list of labels as

attributes. Use [0, 1, . . . , n− 1] as the labels if none are provided. Finally, raise a ValueError

if the number of labels is not equal to the number of nodes in the graph.

(Hint: use array broadcasting to compute Â e�ciently.)

For the graph in Figure 13.1, check that your Â matches (13.5).

Computing the Rankings

In the model (13.2), de�ne the rank of node i as the limit

pi = lim
t→∞

pi(t).

There are several ways to solve for p = limt→∞ p(t).

4 Lab 13. The PageRank Algorithm

Linear System

If p exists, then taking the limit as t→∞ to both sides of (13.3) gives the following.

lim
t→∞

p(t+ 1) = lim
t→∞

[
εÂp(t) +

1− ε
n

1

]
p = εÂp+

1− ε
n

1(
I − εÂ

)
p =

1− ε
n

1 (13.6)

This linear system is easy to solve as long as the number of nodes in the graph isn't too large.

Eigenvalue Problem

Let E be an n× n matrix of ones. Then Ep(t) = 1 since
∑

i=1 pi(t) = 1. Substituting into (13.3),

p(t+ 1) = εÂp(t) +
1− ε
n

Ep(t) =

(
εÂ+

1− ε
n

E

)
p(t) = Bp(t), (13.7)

where B = εÂ+ 1−ε
n E. Now taking the limit at t→∞ of both sides of (13.7),

Bp = p.

That is, p is an eigenvector of B corresponding to the eigenvalue λ = 1. In fact, since the columns

of B sum to 1, and because the entries of B are strictly positive (because the entries of E are all

positive), Perron's theorem guarantees that λ = 1 is the unique eigenvalue of B of largest magnitude,

and that the corresponding eigenvector p is unique up to scaling. Furthermore, p can be scaled so

that each of its entires are positive, meaning p/‖p‖1 is the desired PageRank vector.

Note

A Markov chain is a weighted directed graph where each node represents a state of a discrete

system. The weight of the edge from node j to node i is the probability of transitioning from

state j to state i, and the adjacency matrix of a Markov chain is called a transition matrix.

Since B from (13.7) contains nonnegative entries and its columns all sum to 1, it can be

viewed as the transition matrix of a Markov chain. In that context, the limit vector p is called

the steady state of the Markov chain.

Iterative Method

Solving (13.6) or (13.7) is feasible for small networks, but they are not e�cient strategies for very

large systems. The remaining option is to use an iterative technique. Starting with an initial guess

p(0), use (13.3) to compute p(1),p(2), . . . until ‖p(t)− p(t− 1)‖ is su�ciently small. From (13.7),

we can see that this is just the power method1 for �nding the eigenvector corresponding to the

dominant eigenvalue of B.

1See the Least Squares and Computing Eigenvalues lab for details on the power method.

5

Problem 2. Add the following methods to your class from Problem 1. Each should accept a

damping factor ε (defaulting to 0.85), compute the PageRank vector p, and return a dictionary

mapping label i to its PageRank value pi.

1. linsolve(): solve for p in (13.6).

2. eigensolve(): solve for p using (13.7). Normalize the resulting eigenvector so its entries

sum to 1.

3. itersolve(): in addition to ε, accept an integer maxiter and a �oat tol. Iterate on

(13.3) until ‖p(t) − p(t − 1)‖1 < tol or t > maxiter. Use p(0) = [1n ,
1
n , . . . ,

1
n]

T as the

initial vector (any positive vector that sums to 1 will do, but this assumes equal starting

probabilities).

Check that each method yields the same results. For the graph in Figure 13.1 with ε = 0.85,

you should get the following dictionary mapping labels to PageRank values.

{'a': 0.095758635, 'b': 0.274158285, 'c': 0.355924792, 'd': 0.274158285}

Problem 3. Write a function that accepts a dictionary mapping labels to PageRank values,

like the outputs in Problem 2. Return a list of labels sorted from highest to lowest rank.

(Hint: if d is a dictionary, use list(d.keys()) and list(d.values()) to get the list of keys

and values in the dictionary, respectively.)

For the graph in Figure 13.1 with ε = 0.85, this is the list [c, b, d, a] (or [c, d, b, a], since

b and d have the same PageRank value).

Problem 4. The �le web_stanford.txt contains information on Stanford University web-

pagesa and the hyperlinks between them, gathered in 2002.b Each line of the �le is formatted

as a/b/c/d/e/f..., meaning the webpage with ID a has hyperlinks to webpages with IDs b,

c, d, and so on.

Write a function that accepts a damping factor ε defaulting to 0.85. Read the data and

get a list of the n unique page IDs in the �le (the labels). Construct the n×n adjacency matrix

of the graph where node j points to node i if webpage j has a hyperlink to webpage i. Use your

class from Problem 1 and its itersolve() method from Problem 2 to compute the PageRank

values of the webpages, then rank them with your function from Problem 3. In the case where

two webpages have the same rank, resolve ties by listing the webpage with the larger ID number

�rst. (Hint: Sorting the list of unique webpage IDs before ranking will order the site IDs from

smallest to largest.) Return the ranked list of webpage IDs.

(Hint: after constructing the list of webpage IDs, make a dictionary that maps a webpage ID

to its index in the list. For Figure 13.1, this would be {'a': 0, 'b': 1, 'c': 2, 'd': 3}.

The values are the row/column indices in the adjacency matrix for each label.)

6 Lab 13. The PageRank Algorithm

With ε = 0.85, the top three ranked webpage IDs are 98595, 32791, and 28392.

ahttp://www.stanford.edu/
bSee http://snap.stanford.edu/data/web-Stanford.html for the original (larger) dataset.

PageRank on Weighted Graphs
Nothing in the formulation of the PageRank model (13.3) requires that the edges of the graph are

unweighted. If Aij is the weight of the edge from node j to node i (weight 0 meaning there is no edge

from j to i), then the columns of Â still sum to 1. Thus B = εÂ+ 1−ε
n E is still positive de�nite, so

we can expect a unique PageRank vector p to exist.

Adding weights to the edges can improve the �delity of the model and produce a slightly more

realistic PageRank ordering. On a given webpage, for example, if hyperlinks to page a are clicked on

more frequently hyperlinks to page b, the edge from node a should be given more weight than the

edge to node b.

a

b c

d

2

1

1

1

1

22

2

1

1 A =

a b c d


a 0 0 0 0

b 2 0 1 0

c 1 0 0 2

d 1 0 2 0

Â =

a b c d


a 0 1/4 0 0

b 1/2 1/4 1/3 0

c 1/4 1/4 0 1

d 1/4 1/4 2/3 0

Figure 13.3: A directed weighted graph with four nodes, together with its adjacency matrix and the

corresponding PageRank transition matrix. Edges that are added to �x sinks have weight 1, so the

computation of Ã and Â are exactly the same as in Figure 13.2 and (13.4), respectively.

Problem 5. The �les ncaa2010.csv, ncaa2011.csv, . . ., ncaa2017.csv each contain data for

men's college basketball for a given school year.a Each line (except the very �rst line, which is

a header) represents a di�erent basketball game, formatted winning_team,losing_team.

Write a function that accepts a �lename and a damping factor ε defaulting to 0.85. Read

the speci�ed �le (skipping the �rst line) and get a list of the n unique teams in the �le. Construct

the n× n adjacency matrix of the graph where node j points to node i with weight w if team

j was defeated by team i in w games. That is, edges point from losers to winners. For

instance, the graph in Figure 13.3 would indicate that team c lost to team b once and to team

d twice, team b was undefeated, and team a never won a game. Use your class from Problem

1 and its itersolve() method from Problem 2 to compute the PageRank values of the teams,

then rank them with your function from Problem 3. Return the ranked list of team names.

http://www.stanford.edu/
http://snap.stanford.edu/data/web-Stanford.html

7

Using ncaa2010.csv with ε = 0.85, the top three ranked teams (of the 607 total teams)

should be UConn, Kentucky, and Louisville, in that order. That season, UConn won the

championship, Kentucky was a semi�nalist, and Louisville lost in the �rst tournament round

(a surprising upset).

ancaa2010.csv has data for the 2010�2011 season, ncaa2011.csv for the 2011�2012 season, and so on.

Note

In Problem 5, the damping factor ε acts as an �upset� factor: a larger ε puts more emphasis on

win history; a smaller ε allows more randomness in the system, giving underdog teams a higher

probability of defeating a team with a better record.

It is also worth noting that the sink-�xing procedure is still reasonable for this model

because it gives every other team equal likelihood of beating an undefeated team. That is, the

additional edges don't provide an extra advantage to any one team.

PageRank with NetworkX

NetworkX, usually imported as nx, is a third-party package for working with networks. It represents

graphs internally with dictionaries, thus taking full advantage of the sparsity in a graph. The base

class for directed graphs is called nx.DiGraph. Nodes and edges are usually added or removed

incrementally with the following methods.

Method Description

add_node() Add a single node.

add_nodes_from() Add a list of nodes.

add_edge() Add an edge between two nodes, adding the nodes if needed.

add_edges_from() Add multiple edges (and corresponding nodes as needed).

remove_edge() Remove a single edge (no nodes are removed).

remove_edges_from() Remove multiple edges (no nodes are removed).

remove_node() Remove a single node and all adjacent edges.

remove_nodes_from() Remove multiple nodes and all adjacent edges.

Table 13.1: Methods of the nx.DiGraph class for inserting or removing nodes and edges.

For example, the weighted graph in Figure 13.3 can be constructed with the following code.

>>> import networkx as nx

Initialize an empty directed graph.

>>> DG = nx.DiGraph()

Add the directed edges (nodes are added automatically).

>>> DG.add_edge('a', 'b', weight=2) # a --> b (adds nodes a and b)

>>> DG.add_edge('a', 'c', weight=1) # a --> c (adds node c)

>>> DG.add_edge('a', 'd', weight=1) # a --> d (adds node d)

https://networkx.github.io/documentation/stable/

8 Lab 13. The PageRank Algorithm

>>> DG.add_edge('c', 'b', weight=1) # c --> b

>>> DG.add_edge('c', 'd', weight=2) # c --> d

>>> DG.add_edge('d', 'c', weight=2) # d --> c

Once constructed, an nx.Digrah object can be queried for information about the nodes and

edges. It also supports dictionary-like indexing to access node and edge attributes, such as the weight

of an edge.

Method Description

has_node(A) Return True if A is a node in the graph.

has_edge(A,B) Return True if there is an edge from A to B.

edges() Iterate through the edges.

nodes() Iterate through the nodes.

number_of_nodes() Return the number of nodes.

number_of_edges() Return the number of edges.

Table 13.2: Methods of the nx.DiGraph class for accessing nodes and edges.

Check the nodes and edges.

>>> DG.has_node('a')

True

>>> DG.has_edge('b', 'a')

False

>>> list(DG.nodes())

['a', 'b', 'c', 'd']

>>> list(DG.edges())

[('a', 'b'), ('a', 'c'), ('a', 'd'), ('c', 'b'), ('c', 'd'), ('d', 'c')]

Change the weight of the edge (a, b) to 3.

>>> DG['a']['b']["weight"] += 1

>>> DG['a']['b']["weight"]

3

NetworkX e�ciently implements several graph algorithms. The function nx.pagerank() com-

putes the PageRank values of each node iteratively with sparse matrix operations. This function

returns a dictionary mapping nodes to PageRank values, like the methods in Problem 2.

Calculate the PageRank values of the graph.

>>> nx.pagerank(DG, alpha=0.85) # alpha is the damping factor (epsilon).

{'a': 0.08767781186947843,

'b': 0.23613138394239835,

'c': 0.3661321209576019,

'd': 0.31005868323052127}

9

Achtung!

NetworkX also has a class, nx.Graph, for undirected graphs. The edges in an undirected graph

are bidirectional, so the corresponding adjacency matrix is symmetric.

The PageRank algorithm is not very useful for undirected graphs. In fact, the PageRank

value for node is close to its degree�the number of edges it connects to�divided by the total

number of edges. In Problem 5, that would mean the team who simply played the most games

would be ranked the highest. Always use nx.DiGraph, not nx.Graph, for PageRank and other

algorithms that rely on directed edges.

Problem 6. The �le top250movies.txt contains data from the 250 top-rated movies accord-

ing to IMDb.a Each line in the �le lists a movie title and its cast as title/actor1/actor2/...,

with the actors listed mostly in billing order (stars �rst), though some casts are listed alpha-

betically or in order of appearance.

Create a nx.DiGraph object with a node for each actor in the �le. The weight from actor

a to actor b should be the number of times that actor a and b were in a movie together but actor

b was listed �rst. That is, edges point to higher-billed actors (see Figure 13.4). Compute

the PageRank values of the actors and use your function from Problem 3 to rank them. Return

the list of ranked actors.

(Hint: Consider using itertools.combinations() while constructing the graph. Also, use

encoding="utf-8" as an argument to open() to read the �le, since several actors and actresses

have nonstandard characters in their names such as ø and æ.)

With ε = 0.7, the top three actors should be Leonardo DiCaprio, Robert De Niro, and

Tom Hanks, in that order.

ahttps://www.imdb.com/search/title?groups=top_250&sort=user_rating

https://www.imdb.com/search/title?groups=top_250&sort=user_rating

10 Lab 13. The PageRank Algorithm

Hugh
Jackman

Anne
Hathaway

Scarlett
Johansson

Christian
Bale

Michael
Caine

1

11

2

4

1

1 1

Figure 13.4: A portion of the graph from Problem 6. Michael Caine was in four movies with Christian

Bale where Christian Bale was listed �rst in the cast.

11

Additional Material
Sparsity

On very large networks, the PageRank algorithm becomes computationally di�cult because of the

size of the adjacency matrix A. Fortunately, most adjacency matrices are highly sparse, meaning

the number of edges is much lower than the number of entries in the matrix. Consider adding

functionality to your class from Problem 1 so that it stores Â as a sparse matrix and performs sparse

linear algebra operations in the methods from Problem 2 (use scipy.sparse.linalg).

PageRank as a Predictive Model

The data �les in Problem 5 include tournament games for their respective seasons, so the resulting

rankings naturally align with the outcome of the championship. However, it is also useful to use

PageRank as a predictive model: given data for all regular season games, can the outcomes of the

tournament games be predicted? Over 40 million Americans �ll out 60�100 million March Madness

brackets each year and bet over $9 billion on the tournament, so being able to predict the outcomes

of the games is a big deal. See http://games.espn.com/tournament-challenge-bracket for more

details.

Given regular season data, PageRank can be used to predict tournament results as in Problem

5. There are some pitfalls though; for example, how should ε be chosen? Using ε = .5 with

ncaa2010.csv minus tournament data (all but the last 63 games in the �le) puts UConn�the actual

winner that year�in seventh place, while ε = .9 puts UConn in fourth. Both values for ε also rank

BYU as number one, but BYU lost in the Sweet Sixteen that year. In practice, Google uses .85 as

the damping factor, but there is no rigorous reasoning behind that particular choice.

Other Centrality Measures

In network theory, the centrality of a node refers to its importance. Since there are lots of ways to

measure importance, there are several di�erent centrality measures.

� Degree centrality uses the degree of a node, meaning the number of edges adjacent to it (inde-

pendent of edge direction), for ranking. An academic paper that has been cited many times

has a high degree and is considered more important than a paper that has only been cited once.

� Eigenvector centrality is an extension of degree centrality. Instead of each neighbor contributing

equally to the centrality, nodes that are important are given a higher weight. Thus a node

connected to lots of unimportant nodes can have the same measure as a node connected to a

few, important nodes. Eigenvector centrality is measured by the eigenvector associated with

the largest eigenvalue of the adjacency matrix of the network.

� Katz centrality is a modi�cation to eigenvalue centrality for directed networks. Outgoing nodes

contribute centrality to their neighbors, so an important node makes its neighbors more im-

portant.

� PageRank adapts Katz centrality by averaging out the centrality that a node can pass to its

neighbors. For example, if Google�a website that should have high centrality�points to a

million websites, then it shouldn't pass on that high centrality to all of million of its neighbors,

so each neighbor gets one millionth of Google's centrality.

For more information on these centralities, as well as other ways to measure node importance,

see [New10].

http://games.espn.com/tournament-challenge-bracket

12 Lab 13. The PageRank Algorithm

Bibliography

[New10] Mark Newman. Networks: an introduction. Oxford university press, 2010. [11]

13

	The PageRank Algorithm
	Bibliography

