
1 SQL 2 (The Sequel)

Lab Objective: Since SQL databases contain multiple tables, retrieving information about the
data can be complicated. In this lab we discuss joins, grouping, and other advanced SQL query
concepts to facilitate rapid data retrieval.

We will use the following database as an example throughout this lab, found in students.db.

MajorID MajorName
1 Math
2 Science
3 Writing
4 Art

(a) MajorInfo

CourseID CourseName
1 Calculus
2 English
3 Pottery
4 History

(b) CourseInfo

StudentID StudentName MajorID
401767594 Michelle Fernandez 1
678665086 Gilbert Chapman NULL
553725811 Roberta Cook 2
886308195 Rene Cross 3
103066521 Cameron Kim 4
821568627 Mercedes Hall NULL
206208438 Kristopher Tran 2
341324754 Cassandra Holland 1
262019426 Alfonso Phelps NULL
622665098 Sammy Burke 2

(c) StudentInfo

StudentID CourseID Grade
401767594 4 C
401767594 3 B–
678665086 4 A+
678665086 3 A+
553725811 2 C
678665086 1 B
886308195 1 A
103066521 2 C
103066521 3 C–
821568627 4 D
821568627 2 A+
821568627 1 B
206208438 2 A
206208438 1 C+
341324754 2 D–
341324754 1 A–
103066521 4 A
262019426 2 B
262019426 3 C
622665098 1 A
622665098 2 A–

(d) StudentGrades

Table 1.1: Student database.

Joining Tables
A join combines rows from different tables in a database based on common attributes. In other
words, a join operation creates a new, temporary table containing data from 2 or more existing
tables. Join commands in SQLite have the following general syntax.

1

2 Lab 1. SQL 2 (The Sequel)

SELECT <alias.column, ...>
FROM <table> AS <alias> JOIN <table> AS <alias>, ...
ON <alias.column> == <alias.column>, ...
WHERE <condition>;

The ON clause tells the query how to join tables together. Typically if there are N tables being
joined together, there should be N − 1 conditions in the ON clause.

Inner Joins

An inner join creates a temporary table with the rows that have exact matches on the attribute(s)
specified in the ON clause. Inner joins intersect two or more tables, as in Figure 1.1a.

A B

C

(a) An inner join of A, B, and C.

A B

C

(b) A left outer join of A with B and C.

Figure 1.1

For example, Table 1.1c (StudentInfo) and Table 1.1a (MajorInfo) both have a MajorID
column, so the tables can be joined by pairing rows that have the same MajorID. Such a join
temporarily creates the following table.

StudentID StudentName MajorID MajorID MajorName
401767594 Michelle Fernandez 1 1 Math
553725811 Roberta Cook 2 2 Science
886308195 Rene Cross 3 3 Writing
103066521 Cameron Kim 4 4 Art
206208438 Kristopher Tran 2 2 Science
341324754 Cassandra Holland 1 1 Math
622665098 Sammy Burke 2 2 Science

Table 1.2: An inner join of StudentInfo and MajorInfo on MajorID.

Notice that this table is missing the rows where MajorID was NULL in the StudentInfo table.
This is because there was no match for NULL in the MajorID column of the MajorInfo table, so the
inner join throws those rows away.

3

Because joins deal with multiple tables at once, it is important to assign table aliases with the
AS command. Join statements can also be supplemented with WHERE clauses like regular queries.

>>> import sqlite3 as sql
>>> conn = sql.connect("students.db")
>>> cur = conn.cursor()

>>> cur.execute("SELECT * "
... "FROM StudentInfo AS SI INNER JOIN MajorInfo AS MI "
... "ON SI.MajorID = MI.MajorID;").fetchall()
[(401767594, 'Michelle Fernandez', 1, 1, 'Math'),
(553725811, 'Roberta Cook', 2, 2, 'Science'),
(886308195, 'Rene Cross', 3, 3, 'Writing'),
(103066521, 'Cameron Kim', 4, 4, 'Art'),
(206208438, 'Kristopher Tran', 2, 2, 'Science'),
(341324754, 'Cassandra Holland', 1, 1, 'Math'),
(622665098, 'Sammy Burke', 2, 2, 'Science')]

Select the names and ID numbers of the math majors.
>>> cur.execute("SELECT SI.StudentName, SI.StudentID "
... "FROM StudentInfo AS SI INNER JOIN MajorInfo AS MI "
... "ON SI.MajorID = MI.MajorID "
... "WHERE MI.MajorName == 'Math';").fetchall()
[('Cassandra Holland', 341324754), ('Michelle Fernandez', 401767594)]

Problem 1. Write a function that accepts the name of a database file. Assuming the database
to be in the format of Tables 1.1a–1.1d, query the database for the list of the names of students
who have a B grade in any course (not a B– or a B+).

Outer Joins

A left outer join, sometimes called a left join, creates a temporary table with all of the rows from the
first (left-most) table, and all the “matched” rows on the given attribute(s) from the other relations.
Rows from the left table that don’t match up with the columns from the other tables are supplemented
with NULL values to fill extra columns. Compare the following table and code to Table 1.2.

StudentID StudentName MajorID MajorID MajorName
401767594 Michelle Fernandez 1 1 Math
678665086 Gilbert Chapman NULL NULL NULL
553725811 Roberta Cook 2 2 Science
886308195 Rene Cross 3 3 Writing
103066521 Cameron Kim 4 4 Art
821568627 Mercedes Hall NULL NULL NULL
206208438 Kristopher Tran 2 2 Science
341324754 Cassandra Holland 1 1 Math
262019426 Alfonso Phelps NULL NULL NULL
622665098 Sammy Burke 2 2 Science

Table 1.3: A left outer join of StudentInfo and MajorInfo on MajorID.

4 Lab 1. SQL 2 (The Sequel)

>>> cur.execute("SELECT * "
... "FROM StudentInfo AS SI LEFT OUTER JOIN MajorInfo AS MI "
... "ON SI.MajorID = MI.MajorID;").fetchall()
[(401767594, 'Michelle Fernandez', 1, 1, 'Math'),
(678665086, 'Gilbert Chapman', None, None, None),
(553725811, 'Roberta Cook', 2, 2, 'Science'),
(886308195, 'Rene Cross', 3, 3, 'Writing'),
(103066521, 'Cameron Kim', 4, 4, 'Art'),
(821568627, 'Mercedes Hall', None, None, None),
(206208438, 'Kristopher Tran', 2, 2, 'Science'),
(341324754, 'Cassandra Holland', 1, 1, 'Math'),
(262019426, 'Alfonso Phelps', None, None, None),
(622665098, 'Sammy Burke', 2, 2, 'Science')]

Some flavors of SQL also support the RIGHT OUTER JOIN command, but sqlite3 does not
recognize the command since T1 RIGHT OUTER JOIN T2 is equivalent to T2 LEFT OUTER JOIN T1.

Joining Multiple Tables

Complicated queries often join several different relations. If the same kind of join is being used, the
relations and conditional statements can be put in list form. For example, the following code selects
courses that Kristopher Tran has taken, and the grades that he got in those courses, by joining three
tables together. Note that 2 conditions are required in the ON clause in this case.

>>> cur.execute("SELECT CI.CourseName, SG.Grade "
... "FROM StudentInfo AS SI " # Join 3 tables.
... "INNER JOIN CourseInfo AS CI, StudentGrades SG "
... "ON SI.StudentID==SG.StudentID AND CI.CourseID==SG.CourseID "
... "WHERE SI.StudentName == 'Kristopher Tran';").fetchall()
[('Calculus', 'C+'), ('English', 'A')]

To use different kinds of joins in a single query, append one join statement after another. The
join closest to the beginning of the statement is executed first, creating a temporary table, and the
next join attempts to operate on that table. The following example performs an additional join on
Table 1.3 to find the name and major of every student who got a C in a class.

Do an inner join on the results of the left outer join.
>>> cur.execute("SELECT SI.StudentName, MI.MajorName "
... "FROM StudentInfo AS SI LEFT OUTER JOIN MajorInfo AS MI "
... "ON SI.MajorID == MI.MajorID "
... "INNER JOIN StudentGrades AS SG "
... "ON SI.StudentID = SG.StudentID "
... "WHERE SG.Grade = 'C';").fetchall()
[('Michelle Fernandez', 'Math'),
('Roberta Cook', 'Science'),
('Cameron Kim', 'Art'),
('Alfonso Phelps', None)]

5

In this last example, note carefully that Alfonso Phelps would have been excluded from the
result set if an inner join was performed first instead of an outer join (since he lacks a major).

Problem 2. Write a function that accepts the name of a database file. Query the database for
all tuples of the form (Name, MajorName, Grade) where Name is a student’s name and Grade
is their grade in Calculus. Only include results for students that are actually taking Calculus,
but be careful not to exclude students who haven’t declared a major.

Grouping Data
Many data sets can be naturally sorted into groups. The GROUP BY command gathers rows from a
table and groups them by a certain attribute. The groups are then combined by one of the aggregate
functions AVG(), MIN(), MAX(), SUM(), or COUNT(). The following code groups the rows in Table
1.1d by studentID and counts the number of entries in each group.

>>> cur.execute("SELECT StudentID, COUNT(*) " # * means "all of the rows".
... "FROM StudentGrades "
... "GROUP BY StudentID;").fetchall()
[(103066521, 3),
(206208438, 2),
(262019426, 2),
(341324754, 2),
(401767594, 2),
(553725811, 1),
(622665098, 2),
(678665086, 3),
(821568627, 3),
(886308195, 1)]

GROUP BY can also be used in conjunction with joins. The join creates a temporary table like
Tables 1.2 or 1.3, the results of which can then be grouped.

>>> cur.execute("SELECT SI.StudentName, COUNT(*) "
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID;").fetchall()
[('Cameron Kim', 3),
('Kristopher Tran', 2),
('Alfonso Phelps', 2),
('Cassandra Holland', 2),
('Michelle Fernandez', 2),
('Roberta Cook', 1),
('Sammy Burke', 2),
('Gilbert Chapman', 3),
('Mercedes Hall', 3),
('Rene Cross', 1)]

6 Lab 1. SQL 2 (The Sequel)

Just like the WHERE clause chooses rows in a relation, the HAVING clause chooses groups from the
result of a GROUP BY based on some criteria related to the groupings. For this particular command,
it is often useful (but not always necessary) to create an alias for the columns of the result set with
the AS operator. For instance, the result set of the previous example can be filtered down to only
contain students who are taking 3 courses.

>>> cur.execute("SELECT SI.StudentName, COUNT(*) as num_courses " # Alias.
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID "
... "HAVING num_courses == 3;").fetchall() # Refer to alias later←↩

.
[('Cameron Kim', 3), ('Gilbert Chapman', 3), ('Mercedes Hall', 3)]

Alternatively, get just the student names.
>>> cur.execute("SELECT SI.StudentName " # No alias.
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID "
... "HAVING COUNT(*) == 3;").fetchall()
[('Cameron Kim',), ('Gilbert Chapman',), ('Mercedes Hall',)]

Problem 3. Write a function that accepts a database file. Query the database for the list of
the names of courses that have at least 5 student enrolled in them.

Other Miscellaneous Commands
Ordering Result Sets

The ORDER BY command sorts a result set by one or more attributes. Sorting can be done in ascending
or descending order with ASC or DESC, respectively. This is always the very last statement in a query.

>>> cur.execute("SELECT SI.StudentName, COUNT(*) AS num_courses " # Alias.
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID "
... "ORDER BY num_courses DESC, SI.StudentName ASC;").fetchall()
[('Cameron Kim', 3), # The results are now ordered by the
('Gilbert Chapman', 3), # number of courses each student is in,
('Mercedes Hall', 3), # then alphabetically by student name.
('Alfonso Phelps', 2),
('Cassandra Holland', 2),
('Kristopher Tran', 2),
('Michelle Fernandez', 2),
('Sammy Burke', 2),
('Rene Cross', 1),
('Roberta Cook', 1)]

7

Problem 4. Write a function that accepts a database file. Query the given database for tuples
of the form (MajorName, N) where N is the number of students in the specified major. Sort the
results in ascending order by the count N, and then in alphabetic order by MajorName. Include
Null majors.

Searching Text with Wildcards

The LIKE operator within a WHERE clause matches patterns in a TEXT column. The special characters
% and _ and called wildcards that match any number of characters or a single character, respectively.
For instance, %Z_ matches any string of characters ending in a Z then another character, and %i%
matches any string containing the letter i.

>>> results = cur.execute("SELECT StudentName FROM StudentInfo "
... "WHERE StudentName LIKE '%i%';").fetchall()
>>> [r[0] for r in results]
['Michelle Fernandez', 'Gilbert Chapman', 'Cameron Kim', 'Kristopher Tran']

Problem 5. Write a function that accepts a database file. Query the database for tuples of
the form (StudentName, MajorName) where the last name of the specified student begins with
the letter C. Include Null majors.

Case Expressions

A case expression maps the values in a column using boolean logic. There are two forms of a case
expression: simple and searched. A simple case expression matches and replaces specified attributes.

Replace the values MajorID with new custom values.
>>> cur.execute("SELECT StudentName, CASE MajorID "
... "WHEN 1 THEN 'Mathematics' "
... "WHEN 2 THEN 'Soft Science' "
... "WHEN 3 THEN 'Writing and Editing' "
... "WHEN 4 THEN 'Fine Arts' "
... "ELSE 'Undeclared' END "
... "FROM StudentInfo "
... "ORDER BY StudentName ASC;").fetchall()
[('Alfonso Phelps', 'Undeclared'),
('Cameron Kim', 'Fine Arts'),
('Cassandra Holland', 'Mathematics'),
('Gilbert Chapman', 'Undeclared'),
('Kristopher Tran', 'Soft Science'),
('Mercedes Hall', 'Undeclared'),
('Michelle Fernandez', 'Mathematics'),

8 Lab 1. SQL 2 (The Sequel)

('Rene Cross', 'Writing and Editing'),
('Roberta Cook', 'Soft Science'),
('Sammy Burke', 'Soft Science')]

A searched case expression involves using a boolean expression at each step, instead of listing
all of the possible values for an attribute.

Change NULL values in MajorID to 'Undeclared' and non-NULL to 'Declared'.
>>> cur.execute("SELECT StudentName, CASE "
... "WHEN MajorID IS NULL THEN 'Undeclared' "
... "ELSE 'Declared' END "
... "FROM StudentInfo "
... "ORDER BY StudentName ASC;").fetchall()
[('Alfonso Phelps', 'Undeclared'),
('Cameron Kim', 'Declared'),
('Cassandra Holland', 'Declared'),
('Gilbert Chapman', 'Undeclared'),
('Kristopher Tran', 'Declared'),
('Mercedes Hall', 'Undeclared'),
('Michelle Fernandez', 'Declared'),
('Rene Cross', 'Declared'),
('Roberta Cook', 'Declared'),
('Sammy Burke', 'Declared')]

Chaining Queries
The result set of any SQL query is really just another table with data from the original database.
Separate queries can be made from result sets by enclosing the entire query in parentheses. For these
sorts of operations, it is very important to carefully label the columns resulting from a subquery.

>>> cur.execute("SELECT majorstatus, COUNT(*) AS majorcount "
... "FROM (" # Begin subquery.
... "SELECT StudentName, CASE "
... "WHEN MajorID IS NULL THEN 'Undeclared' "
... "ELSE 'Declared' END AS majorstatus "
... "FROM StudentInfo) " # End subquery.
... "GROUP BY majorstatus "
... "ORDER BY majorcount DESC;").fetchall()
[('Declared', 7), ('Undeclared', 3)]

Problem 6. Write a function that accepts the name of a database file. Query the database for
tuples of the form (StudentName, N, GPA) where N is the number of courses that the specified
student is enrolled in and GPA is their grade point average based on the following point system.

9

A+, A = 4.0 B = 3.0 C = 2.0 D = 1.0
A– = 3.7 B– = 2.7 C– = 1.7 D– = 0.7
B+ = 3.4 C+ = 2.4 D+ = 1.4

Order the results from greatest GPA to least.

	SQL 2 (The Sequel)

