
15 Iterative Solvers

Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of

parameters. Solving such systems with Gaussian elimination or matrix factorizations could require

trillions of �oating point operations (FLOPs), which is of course infeasible. Solutions of large systems

must therefore be approximated iteratively. In this lab we implement three popular iterative methods

for solving large systems: Jacobi, Gauss-Seidel, and Successive Over-Relaxation.

Iterative methods are often useful to solve large systems of equations. In this lab, let x(k) denote

the kth iteration of the iterative method for solving the problem Ax = b for x. Furthermore, let xi

be the ith component of x so that x
(k)
i is the ith component of x in the kth iteration. Like other

iterative methods, there are two stopping parameters: a very small ε > 0 and an integer N ∈ N.
Iterations continue until either

‖x(k−1) − x(k)‖ < ε or k > N. (15.1)

The Jacobi Method
The Jacobi Method is a simple but powerful method used for solving certain kinds of large linear

systems. The main idea is simple: solve for each variable in terms of the others, then use the previous

values to update each approximation. As a (very small) example, consider the 3× 3

2x1 − x3 = 3,

−x1 + 3x2 + 2x3 = 3,

+ x2 + 3x3 = −1.

Solving the �rst equation for x1, the second for x2, and the third for x3 yields

x1 = 1
2 (3 + x3),

x2 = 1
3 (3 + x1 − 2x3),

x3 = 1
3 (−1− x2).

Now begin with an initial guess x(0) = [x
(0)
1 , x

(0)
2 , x

(0)
3]T = [0, 0, 0]T. To compute the �rst

approximation x(1), use the entries of x(0) as the variables on the right side of the previous equations:

x
(1)
1 = 1

2 (3 + x
(0)
3) = 1

2 (3 + 0) = 3
2 ,

x
(1)
2 = 1

3 (3 + x
(0)
1 − 2x

(0)
3) = 1

3 (3 + 0− 0) = 1,

x
(1)
3 = 1

3 (−1− x
(0)
2) = 1

3 (−1− 0) = − 1
3 .

1

2 Lab 15. Iterative Solvers

Thus x(1) = [32 , 1,−
1
3]

T. Computing x(2) is similar:

x
(2)
1 = 1

2 (3 + x
(1)
3) = 1

2 (3−
1
3) = 4

3 ,

x
(2)
2 = 1

3 (3 + x
(1)
1 − 2x

(1)
3) = 1

3 (3 +
3
2 + 2

3) = 31
18 ,

x
(2)
3 = 1

3 (−1− x
(1)
2) = 1

3 (−1− 1) = − 2
3 .

The process is repeated until at least one of the two stopping criteria in (15.1) is met. For this

particular problem, convergence to 8 decimal places (ε = 10−8) is reached in 29 iterations.

x
(k)
1 x

(k)
2 x

(k)
3

x(0) 0 0 0

x(1) 1.5 1 −0.33333333
x(2) 1.33333333 1.72222222 −0.66666667
x(3) 1.16666667 1.88888889 −0.90740741
x(4) 1.04629630 1.99382716 −0.96296296
...

...
...

...

x(28) 0.99999999 2.00000001 −0.99999999
x(29) 1 2 −1

Matrix Representation

The iterative steps performed above can be expressed in matrix form. First, decompose A into its

diagonal entries, its entries below the diagonal, and its entries above the diagonal, as A = D+L+U .
a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

0 0 . . . 0

a21 0 . . . 0
...

. . .
. . .

...

an1 . . . an,n−1 0

0 a12 . . . a1n

0 0
. . .

...
...

...
. . . an−1,n

0 0 . . . 0

D L U

With this decomposition, x can be expressed in the following way.

Ax = b

(D + L+ U)x = b

Dx = −(L+ U)x+ b

x = D−1(−(L+ U)x+ b)

Now using x(k) as the variables on the right side of the equation to produce x(k+1) on the left,

and noting that L+ U = A−D, we have the following.

x(k+1) = D−1(−(A−D)x(k) + b)

= D−1(Dx(k) −Ax(k) + b)

= x(k) +D−1(b−Ax(k)) (15.2)

There is a potential problem with (15.2): calculating a matrix inverse is the cardinal sin of

numerical linear algebra, yet the equation contains D−1. However, since D is a diagonal matrix,

D−1 is also diagonal, and is easy to compute.

3

D−1 =

1

a11
0 . . . 0

0 1
a22

. . . 0
...

...
. . .

...

0 0 . . . 1
ann

Because of this, the Jacobi method requires that A have nonzero diagonal entries.

The diagonal D can be represented by the 1-dimensional array d of the diagonal entries. Then

the matrix multiplication Dx is equivalent to the component-wise vector multiplication d∗x = x∗d.
Likewise, the matrix multiplication D−1x is equivalent to the component-wise �vector division� x/d.

Problem 1. Write a function that accepts a matrix A, a vector b, a convergence tolerance tol

defaulting to 10−8, and a maximum number of iterations maxiter defaulting to 100. Implement

the Jacobi method using (15.2), returning the approximate solution to the equation Ax = b.

Run the iteration until ‖x(k−1) − x(k)‖∞ < tol, and only iterate at most maxiter times.

Avoid using la.inv() to calculate D−1, but use la.norm() to calculate the vector ∞-norm.

Your function should be robust enough to accept systems of any size. To test your function,

generate a random b with np.random.random() and use the following function to generate an

n×n matrix A for which the Jacobi method is guaranteed to converge. Run the iteration, then

check that Ax(k) and b are close using np.allclose().

def diag_dom(n, num_entries=None):

"""Generate a strictly diagonally dominant (n, n) matrix.

Parameters:

n (int): The dimension of the system.

num_entries (int): The number of nonzero values.

Defaults to n^(3/2)-n.

Returns:

A ((n,n) ndarray): A (n, n) strictly diagonally dominant matrix.

"""

if num_entries is None:

num_entries = int(n**1.5) - n

A = np.zeros((n,n))

rows = np.random.choice(np.arange(0,n), size=num_entries)

cols = np.random.choice(np.arange(0,n), size=num_entries)

data = np.random.randint(-4, 4, size=num_entries)

for i in range(num_entries):

A[rows[i], cols[i]] = data[i]

for i in range(n):

A[i,i] = np.sum(np.abs(A[i])) + 1

return A

Also test your function on random n× n matrices. If the iteration is non-convergent, the

successive approximations will have increasingly large entries.

4 Lab 15. Iterative Solvers

Convergence

Most iterative methods only converge under certain conditions. For the Jacobi method, convergence

mostly depends on the nature of the matrix A. If the entries aij of A satisfy the property

|aii| >
∑
j 6=i

|aij | for all i = 1, 2, . . . , n,

then A is called strictly diagonally dominant (diag_dom() in Problem 1 generates a strictly diagonally

dominant n× n matrix). If this is the case,1 then the Jacobi method always converges, regardless of

the initial guess x0. This is a very di�erent convergence result than many other iterative methods

such as Newton's method where convergence is highly sensitive to the initial guess.

There are a few ways to determine whether or not an iterative method is converging. For

example, since the approximation x(k) should satisfy Ax(k) ≈ b, the normed di�erence ‖Ax(k)−b‖∞
should be small. This value is called the absolute error of the approximation. If the iterative method

converges, the absolute error should decrease to ε.

Problem 2. Modify your Jacobi method function in the following ways.

1. Add a keyword argument called plot, defaulting to False.

2. Keep track of the absolute error ‖Ax(k) − b‖∞ of the approximation at each iteration.

3. If plot is True, produce a lin-log plot (use plt.semilogy()) of the error against iteration

count. Remember to still return the approximate solution x.

If the iteration converges, your plot should resemble the following �gure.

0 5 10 15 20 25 30
Iteration

10 7

10 5

10 3

10 1

Ab
so

lu
te

 E
rro

r o
f A

pp
ro

xi
m

at
io

n

Convergence of Jacobi Method

1Although this seems like a strong requirement, most real-world linear systems can be represented by strictly

diagonally dominant matrices.

5

The Gauss-Seidel Method
The Gauss-Seidel method is essentially a slight modi�cation of the Jacobi method. The main di�er-

ence is that in Gauss-Seidel, new information is used immediately. As an example, consider again

the system from the previous section,

2x1 − x3 = 3,

−x1 + 3x2 + 2x3 = 3,

+ x2 + 3x3 = −1.

As with the Jacobi method, solve for x1 in the �rst equation, x2 in the second equation, and

x3 in the third equation:

x1 = 1
2 (3 + x3),

x2 = 1
3 (3 + x1 − 2x3),

x3 = 1
3 (−1− x2).

Using x(0) to compute x
(1)
1 in the �rst equation as before,

x
(1)
1 =

1

2
(3 + x

(0)
3) =

1

2
(3 + 0) =

3

2
.

Now, however, use the updated value of x
(1)
1 in the calculation of x

(1)
2 :

x
(1)
2 =

1

3
(3 + x

(1)
1 − 2x

(0)
3) =

1

3
(3 +

3

2
− 0) =

3

2
.

Likewise, use the updated values of x
(1)
1 and x

(1)
2 to calculate x

(1)
3 :

x
(1)
3 =

1

3
(−1− x

(1)
2) =

1

3
(−1− 3

2
) = −5

6
.

This process of using calculated information immediately is called forward substitution, and causes

the algorithm to (generally) converge much faster.

x
(k)
1 x

(k)
2 x

(k)
3

x(0) 0 0 0

x(1) 1.5 1.5 −0.83333333
x(2) 1.08333333 1.91666667 −0.97222222
x(3) 1.01388889 1.98611111 −0.99537037
x(4) 1.00231481 1.99768519 −0.99922840
...

...
...

...

x(11) 1.00000001 1.99999999 −1
x(12) 1 2 −1

Notice that Gauss-Seidel converges in less than half as many iterations as Jacobi does for this system.

Implementation

Because Gauss-Seidel updates only one element of the solution vector at a time, the iteration cannot

be summarized by a single matrix equation. Instead, the process is most generally described by the

equation

x
(k+1)
i =

1

aii

bi −
∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 . (15.3)

6 Lab 15. Iterative Solvers

Let ai be the ith row of A. The two sums closely resemble the regular vector product of ai
and x(k) without the ith term aiix

(k)
i . This suggests the simpli�cation

x
(k+1)
i =

1

aii

(
bi − aTi x

(k) + aiix
(k)
i

)
= x

(k)
i +

1

aii

(
bi − aTi x

(k)
)
. (15.4)

One sweep through all the entries of x completes one iteration.

Problem 3. Write a function that accepts a matrix A, a vector b, a convergence tolerance

tol defaulting to 10−8, a maximum number of iterations maxiter defaulting to 100, and a

keyword argument plot that defaults to False. Implement the Gauss-Seidel method using

(15.4), returning the approximate solution to the equation Ax = b.

Use the same stopping criterion as in Problem 1. Also keep track of the absolute errors

of the iteration, as in Problem 2. If plot is True, plot the error against iteration count. Use

diag_dom() to generate test cases.

Achtung!

Since the Gauss-Seidel algorithm operates on the approximation vector in place (modifying

it one entry at a time), the previous approximation x(k−1) must be stored at the beginning

of the kth iteration in order to calculate ‖x(k−1) − x(k)‖∞. Additionally, since NumPy

arrays are mutable, the past iteration must be stored as a copy.

>>> x0 = np.random.random(5) # Generate a random vector.

>>> x1 = x0 # Attempt to make a copy.

>>> x1[3] = 1000 # Modify the "copy" in place.

>>> np.allclose(x0, x1) # But x0 was also changed!

True

Instead, make a copy of x0 when creating x1.

>>> x0 = np.copy(x1) # Make a copy.

>>> x1[3] = -1000

>>> np.allclose(x0, x1)

False

Convergence

Whether or not the Gauss-Seidel method converges depends on the nature of A. If all of the eigenval-

ues of A are positive, A is called positive de�nite. If A is positive de�nite or if it is strictly diagonally

dominant, then the Gauss-Seidel method converges regardless of the initial guess x(0).

7

Solving Sparse Systems Iteratively
Iterative solvers are best suited for solving very large sparse systems. However, using the Gauss-Seidel

method on sparse matrices requires translating code from NumPy to scipy.sparse. The algorithm

is the same, but there are some functions that are named di�erently between these two packages.2

Problem 4. Write a new function that accepts a sparse matrix A, a vector b, a convergence

tolerance tol, and a maximum number of iterations maxiter (plotting the convergence is not

required for this problem). Implement the Gauss-Seidel method using (15.4), returning the

approximate solution to the equation Ax = b. Use the usual default stopping criterion.

The Gauss-Seidel method requires extracting the rows Ai from the matrix A and com-

puting AT
i x. There are many ways to do this that cause some fairly serious runtime issues, so

we provide the code for this speci�c portion of the algorithm.

Get the indices of where the i-th row of A starts and ends if the

nonzero entries of A were flattened.

rowstart = A.indptr[i]

rowend = A.indptr[i+1]

Multiply only the nonzero elements of the i-th row of A with the

corresponding elements of x.

Aix = A.data[rowstart:rowend] @ x[A.indices[rowstart:rowend]]

To test your function, cast the result of diag_dom() as a sparse matrix.

>>> from scipy import sparse

>>> A = sparse.csr_matrix(diag_dom(50000))

>>> b = np.random.random(50000)

Successive Over-Relaxation

There are many systems that meet the requirements for convergence with the Gauss-Seidel method,

but for which convergence is still relatively slow. A slightly altered version of the Gauss-Seidel

method, called Successive Over-Relaxation (SOR), can result in faster convergence. This is achieved

by introducing a relaxation factor ω ≥ 1 and modifying (15.3) as

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi −
∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 .

Simplifying the equation, we have

x
(k+1)
i = x

(k)
i +

ω

aii

(
bi − aTi x

(k)
)
. (15.5)

2See the lab on Linear Systems for a review of scipy.sparse matrices and syntax.

8 Lab 15. Iterative Solvers

Note that when ω = 1, SOR reduces to Gauss-Seidel. The relaxation factor ω weights the new

iteration between the current best approximation and the next approximation in a way that can

sometimes dramatically improve convergence.

Problem 5. Write a function that accepts a sparse matrix A, a vector b, a relaxation factor

ω, a convergence tolerance tol, and a maximum number of iterations maxiter. Implement

SOR using (15.5), compute the approximate solution to the equation Ax = b. Use the usual

stopping criterion. Return the approximate solution x as well as a boolean indicating whether

the function converged and the number of iterations computed.

(Hint: this requires changing only one line of code from the sparse Gauss-Seidel function.)

A Finite Difference Method
Laplace's equation is an important partial di�erential equation that arises often in both pure and

applied mathematics. In two dimensions, the equation has the following form.

∂2u

∂x2
+

∂2u

∂y2
= 0 (15.6)

Laplace's equation can be used to model heat �ow. Consider a square metal plate where the

top and bottom borders are �xed at 0◦ Celsius and the left and right sides are �xed at 100◦ Celsius.

Given these boundary conditions, we want to describe how heat di�uses through the rest of the plate.

The solution to Laplace's equation describes the plate when it is in a steady state, meaning that the

heat at a given part of the plate no longer changes with time.

It is possible to solve (15.6) analytically. However, the problem can also be solved numerically

using a �nite di�erence method. To begin, we impose a discrete, square grid on the plate with uniform

spacing. Denote the points on the grid by (xi, yj) and the value of u at these points (the heat) as

u(xi, yj) = Ui,j . Using the centered di�erence quotient for second derivatives to approximate the

partial derivatives,

0 =
∂2u

∂x2
+

∂2u

∂y2

≈ Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2

=
1

h2
(−4Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1) , (15.7)

where h = xi+1 − xi = yj+1 − yj is the distance between the grid points in either direction. This

problem can be formulated as a linear system. Suppose the grid has exactly (n+2)× (n+2) entries.

Then the interior of the grid (where u(x, y) is unknown) is n×n, and can be �attened into an n2× 1

vector u. The entire �rst row goes �rst, then the second row, proceeding to the nth row.

u =
[
U1,1 U1,2 · · · U1,n U2,1 U2,2 · · · U2,n · · · Un,n

]T
From (15.7), for an interior point Ui,j , we have

− 4Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 = 0. (15.8)

If any of the neighbors to Ui,j is a boundary point on the grid, its value is already determined by the

boundary conditions. For example, the neighbor U3,0 of the gridpoint for U3,1 is �xed at U3,0 = 100.

9

Figure 15.1: On the left, an example of a 6 × 6 grid (n = 4) where the red dots are hot boundary

zones and the blue dots are cold boundary zones. On the right, the green dots are the neighbors of

the interior black dot that are used to approximate the heat at the black dot.

In this case, (15.8) becomes

−4U3,1 + U2,1 + U3,2 + U4,1 = −100.

The constants on the right side of (15.8) become the n2 × 1 vector b. All nonzero entries of b

correspond to interior points that touch the left or right boundaries.
As an example, writing (15.8) for the 16 interior points of the grid in Figure 15.1 results in the

following 16× 16 system Au = b. Note the block structure (empty blocks are all zeros).

−4 1 0 0 1 0 0 0
1 −4 1 0 0 1 0 0
0 1 −4 0 0 0 1 0
0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0
0 1 0 0 1 −4 1 0
0 0 1 0 0 1 −4 1
0 0 0 1 0 0 1 −4

U1,1

U1,2

U1,3

U1,4

U2,1

U2,2

U2,3

U2,4

U3,1

U3,2

U3,3

U3,4

U4,1

U4,2

U4,3

U4,4

=

−100
0
0

−100

−100
0
0

−100

−100
0
0

−100

−100
0
0

−100

More concisely, for any positive integer n, the matrix A can be written as

A =

B I

I B I

I
. . .

. . .

. . .
. . . I

I B

 , where B =

−4 1

1 −4 1

1
. . .

. . .

. . .
. . . 1

1 −4

 is n× n.

Problem 6. Write a function that accepts an integer n, a relaxation factor ω, a convergence

tolerance tol that defaults to 10−8, a maximum number of iterations maxiter that defaults

to 100, and a bool plot that defaults to False. Generate and solve the corresponding system

10 Lab 15. Iterative Solvers

Au = b using Problem 5. Also return a boolean indicating whether the function converged and

the number of iterations computed.

(Hint: see Problem 5 of the Linear Systems lab for the construction of A. Also, np.tile()

may be useful for constructing b.)

If plot=True, visualize the solution u with a heatmap using plt.pcolormesh() (the

colormap "coolwarm" is a good choice in this case). This shows the distribution of heat over

the hot plate after it has reached its steady state. Note that the u must be reshaped as an

n× n array to properly visualize the result.

Problem 7. To demonstrate how convergence is a�ected by the value of the relaxation factor

ω in SOR, run your function from Problem 6 with ω = 1, 1.05, 1.1, . . . , 1.9, 1.95 and n = 20.

Plot the number of computed iterations as a function of ω. Return the value of ω that results

in the least number of iterations.

Note that the matrix A from Problem 6 is not strictly diagonally dominant. However,

A is positive de�nite, so the algorithm will converge. Unfortunately, convergence for these

kinds of systems usually requires more iterations than for strictly diagonally dominant systems.

Therefore, set tol=1e-2 and maxiter=1000.

Recall that ω = 1 corresponds to the Gauss-Seidel method. Choosing a more optimal

relaxation factor saves a large number of iterations. This could translate to saving days or

weeks of computation time while solving extremely large linear systems on a supercomputer.

	Iterative Solvers

