
17 GMRES

Lab Objective: The Generalized Minimal Residuals (GMRES) algorithm is an iterative Krylov

subspace method for e�ciently solving large linear systems. In this lab we implement the basic GM-

RES algorithm, then make an improvement by using restarts. We then discuss the convergence of the

algorithm and its relationship with the eigenvalues of a linear system. Finally, we introduce SciPy's

version of GMRES.

The GMRES Algorithm

GMRES is an iterative method that uses Krylov subspaces to reduce a high-dimensional problem to

a sequence of smaller dimensional problems. Let A be an invertible m ×m matrix and let b be a

vector of length m. Let Kn(A,b) be the order-n Krylov subspace generated by A and b. Instead

of solving the system Ax = b directly, GMRES uses least squares to �nd xn ∈ Kn that minimizes

the residual rn = ‖b − Axn‖2. The algorithm terminates when this residual is smaller than some

predetermined value. In many situations, this happens when n is much smaller than m.

The GMRES algorithm uses the Arnoldi iteration for numerical stability. The Arnoldi iteration

produces Hn, an (n+1)×n upper Hessenberg matrix, and Qn, a matrix whose columns make up an

orthonormal basis of Kn(A,b), such that AQn = Qn+1Hn. The GMRES algorithm �nds the vector

xn which minimizes the norm ‖b−Axn‖2, where xn = Qnyn + x0 for some yn ∈ Rn. Since the

columns of Qn are orthonormal, the residual can be equivalently computed as

‖b−Axn‖2 = ‖Qn+1(βe1 −Hnyn)‖2 = ‖Hnyn − βe1‖2. (17.1)

Here e1 is the vector [1, 0, . . . , 0]T of length n + 1 and β = ‖b−Ax0‖2, where x0 is an initial

guess of the solution. Thus, to minimize ‖b−Axn‖2, the right side of (17.1) can be minimized, and

xn can be computed as xn = Qnyn + x0.

1

2 Lab 17. GMRES

Algorithm 17.1 The GMRES algorithm. This algorithm operates on a vector b and a linear

operator A. It iterates k times or until the residual is less than tol, returning an approximate

solution to Ax = b and the error in this approximation.

1: procedure GMRES(A, b, x0, k, tol)

2: Q← empty(size(b), k + 1) . Initialization.

3: H ← zeros(k + 1, k)

4: r0 ← b−A(x0)

5: Q:,0 = r0/ ‖r0‖2
6: for j = 0 . . . k − 1 do . Perform the Arnoldi iteration.

7: Q:,j+1 ← A(Q:,j)

8: for i = 0 . . . j do

9: Hi,j ← QT
:,iQ:,j+1

10: Q:,j+1 ← Q:,j+1 −Hi,jQ:,i

11: Hj+1,j ← ‖Q:,j+1‖2
12: if |Hj+1,j | > tol then . Avoid dividing by zero.

13: Q:,j+1 ← Q:,j+1/Hj+1,j

14: y← least squares solution to ‖H:j+2,:j+1x− βe1‖2 . β and e1 as in (17.1).

15: res ← ‖H:j+2,:j+1y − βe1‖2
16: if res < tol then

17: return Q:,:j+1y + x0, res

18: return Q:,:j+1y + x0, res

Problem 1. Write a function that accepts a matrix A, a vector b, and an initial guess x0, a

maximum number of iterations k defaulting to 100, and a stopping tolerance tol that defaults to

10−8. Use Algorithm 17.1 to approximate the solution to Ax = b using the GMRES algorithm.

Return the approximate solution and the residual at the approximate solution.

You may assume that A and b only have real entries. Use scipy.linalg.lstsq() to

solve the least squares problem. Be sure to read the documentation so that you understand

what the function returns.

Compare your function to the following code.

>>> A = np.array([[1,0,0],[0,2,0],[0,0,3]])

>>> b = np.array([1, 4, 6])

>>> x0 = np.zeros(b.size)

>>> gmres(A, b, x0, k=100, tol=1e-8)

(array([1., 2., 2.]), 7.174555448775421e-16)

Convergence of GMRES

One of the most important characteristics of GMRES is that it will always arrive at an exact solution

(if one exists). At the n-th iteration, GMRES computes the best approximate solution to Ax = b for

xn ∈ Kn. If A is full rank, then Km = Fm, so the mth iteration will always return an exact answer.

Sometimes, the exact solution x ∈ Kn for some n < m, in this case xn is an exact solution. In either

case, the algorithm is convergent after n steps if the nth residual is su�ciently small.

3

The rate of convergence of GMRES depends on the eigenvalues of A.

Problem 2. Add a keyword argument plot defaulting to False to your function from Problem

1. If plot=True, keep track of the residuals at each step of the algorithm. At the end of the

iteration, before returning the approximate solution and its residual error, create a �gure with

two subplots.

1. Make a scatter plot of the eigenvalues of A on the complex plane.

2. Plot the residuals versus the iteration counts using a log scale on the y-axis

(use ax.semilogy()).

Problem 3. Use your function from Problem 2 to investigate how the convergence of GMRES

relates to the eigenvalues of a matrix as follows. De�ne an m×m matrix

An = nI + P,

where I is the identity matrix and P is an m ×m matrix with entries taken from a random

normal distribution with mean 0 and standard deviation 1/(2
√
m). Call your function from

Problem 2 on An for n = −4,−2, 0, 2, 4. Use m = 200, let b be an array of all ones, and let

x0 = 0.

Use np.random.normal() to create the matrix P . When analyzing your results, pay

special attention to the clustering of the eigenvalues in relation to the origin. Compare your

results with n = 2, m = 200 to Figure 17.1.

Ideas for this problem were taken from Example 35.1 on p. 271 of [TB97].

1.6 1.8 2.0 2.2 2.4

0.4

0.2

0.0

0.2

0.4

0 2 4 6 8 10 12
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Figure 17.1: On the left, the eigenvalues of the matrix A2 de�ned in Problem 3. On the right,

the rapid convergence of the GMRES algorithm on A2 with starting vector b = (1, 1, . . . , 1).

GMRES with Restarts
The �rst few iterations of GMRES have low spatial and temporal complexity. However, as k increases,

the kth iteration of GMRES becomes more expensive temporally and spatially. In fact, computing

the kth iteration of GMRES for very large k can be prohibitively complex.

This issue is addressed by using GMRES(k), or GMRES with restarts. When k becomes large,

4 Lab 17. GMRES

this algorithm restarts GMRES with an improved initial guess. The new initial guess is taken to

be the vector that was found upon termination of the last GMRES iteration run. The algorithm

GMRES(k) will always have manageable spatial and temporal complexity, but it is less reliable than

GMRES. If the true solution x to Ax = b is nearly orthogonal to the Krylov subspaces Kn(A,b) for

n ≤ k, then GMRES(k) could converge very slowly or not at all.

Problem 4. Write a function that implements GMRES with restarts as follows.

1. Perform the GMRES algorithm for a maximum of k iterations.

2. If the desired tolerance was reached, terminate the algorithm. If not, repeat step 1 using

xk from the previous GMRES algorithm as a new initial guess x0.

3. Repeat step 2 until the desired tolerance has been obtained or until a given maximum

number of restarts has been reached.

Your function should accept all of the same inputs as the function you wrote in Problem 1 with

the exception of k, which will now denote the number of iterations before restart (defaults to 5),

and an additional parameter restarts which denotes the maximum number of restarts before

termination (defaults to 50).

GMRES in SciPy
The GMRES algorithm is implemented in SciPy as the function scipy.sparse.linalg.gmres().

Here we use this function to solve Ax = b where A is a random 300× 300 matrix and b is a random

vector.

>>> import numpy as np

>>> from scipy import sparse

>>> from scipy.sparse import linalg as spla

>>> A = np.random.rand(300, 300)

>>> b = np.random(300)

>>> x, info = spla.gmres(A, b)

>>> print(info)

3000

The function outputs two objects: the approximate solution x and an integer info which gives

information about the convergence of the algorithm. If info=0 then convergence occured; if info

is positive then it equals the number of iterations performed. In the previous case, the function

performed 3000 iterations of GMRES before returning the approximate solution x. The following

code veri�es how close the computed value was to the exact solution.

>>> la.norm((A @ x) - b)

4.744196381683801

A better approximation can be obtained using GMRES with restarts.

5

Restart after 1000 iterations.

>>> x, info = spla.gmres(A, b, restart=1000)

>>> info

0

>>> la.norm((A @ x) - b)

1.0280404494143551e-12

This time, the returned approximation x is about as close to a true solution as can be expected.

Problem 5. Plot the runtimes of your implementations of GMRES from Problems 1 and 4

and scipy.sparse.linalg.gmres() use the default tolerance and restart=1000 with di�erent

matrices. Use them×mmatrix P withm = 25, 50, . . . 200 and with entries taken from a random

normal distribution with mean 0 and standard deviation 1/(2
√
m). Use a vector of ones for b

and a vector of zeros for x0. Use a single �gure for all plots, plot the runtime on the y-axis and

m on the x-axis.

6 Lab 17. GMRES

Bibliography

[TB97] Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1997. [3]

7

	GMRES
	Bibliography

