
Lab 12

Gaussian Quadrature

Lab Objective: Numerical quadrature is an important numerical integration
technique. The popular Newton-Cotes quadrature uses uniformly spaced points to
approximate the integral, but Runge’s phenomenon prevents Newton-Cotes from be-
ing e↵ective for many functions. The Gaussian Quadrature method, on the other
hand, uses carefully chosen points and weights to mitigate this problem.

Shifting the Interval of Integration

As with all quadrature methods, we begin by choosing a set of points x
i

and weights
w

i

to approximate an integral.

Z
b

a

f(x)dx ⇡
nX

i=1

w
i

f(x
i

).

When we do Gaussian quadrature, we are required to choose a weight function
W (x). This function determines both the x

i

’s and the w
i

’s. Theoretically, the
weight function determines a set of orthogonal polynomials to approximate the
function f .

The weight function also determines the interval over which the integration will
occur. For example, we may choose the weight function as W (x) = 1 over [�1, 1] to
integrate functions on [�1, 1]. To calculate the definite integrate over a the arbitrary
interval [a, b], we perform a u-substitution to shift the interval of integration from
[a, b] to [�1, 1]. Let

u =
2x� b� a

b� a

so that u = �1 when x = a and u = 1 when x = b. Then we have

x =
b� a

2
u+

a+ b

2
and dx =

b� a

2
du,

so the transformed integral is given by
Z

b

a

f(x)dx =
b� a

2

Z 1

�1
f

✓
b� a

2
u+

a+ b

2

◆
du. (12.1)

119

120 Lab 12. Gaussian Quadrature

The general quadrature formula is then given by the following equation.
Z

b

a

f(x)dx ⇡ b� a

2

X

i

w
i

f

✓
(b� a)

2
x
i

+
(a+ b)

2

◆

Problem 1. Write a function that accepts a function f , interval endpoints
a and b, and a keyword argument plot that defaults to False. Use (12.1) to
construct a function g such that

Z
b

a

f(x)dx =
b� a

2

Z 1

�1
g(u)du.

(Hint: this can be done in a single line using the lambda keyword.)

If plot is True, plot f over [a, b] and g over [�1, 1] in separate subplots. The
functions probably have similar shapes, but note the di↵erence in the scaling
of the y-axis. Try f(x) = x2 and f(x) = (x� 3)3 over 1, 4] as examples.

Finally, return the new function g.

Integrating with Given Weights and Points

With the new shifted function g from Problem 1, we can write the quadrature
formula as follows. Z

b

a

f(x)dx ⇡ b� a

2

X

i

w
i

g(x
i

) (12.2)

Suppose for a given weight function W (x) and a given number of points n, we
have the sample points x = [x1, . . . , xn

]T and weights w = [w1, . . . , wn

]T stored as
1-d NumPy arrays. The summation in (12.2) can then be calculated with the vector
multiplication wTg(x), where g(x) = [g(x1), . . . , g(xn

)]T.

Problem 2. Write a function that accepts a function f , interval endpoints
a and b, an array of points x, and an array of weights w. Use (12.2) and your
function from Problem 1 to calculate the integral of f over [a, b]. Return the
value of the integral.

To test this function, use the following 5 points and weights that accom-
pany the constant weight function W (x) = 1 (this weight function corre-
sponds to the Legendre polynomials). See the next page for their definitions
using NumPy.

x
i

� 1
3

r
5 + 2

q
10
7 � 1

3

r
5� 2

q
10
7 0 1

3

r
5� 2

q
10
7

1
3

r
5 + 2

q
10
7

w
i

322� 13
p
70

900

322 + 13
p
70

900

128

225

322 + 13
p
70

900

322� 13
p
70

900

121

import numpy as np

from math import sqrt

s1 = 2 * sqrt(10. / 7.)

points = np.array([-sqrt(5 + s1) / 3.,

-sqrt(5 - s1) / 3.,

0.,

sqrt(5 - s1) / 3.,

sqrt(5 + s1) / 3.])

s2 = 13 * sqrt(70)

weights = np.array([(322 - s2) / 900.,

(322 + s2) / 900.,

128 / 225.,

(322 + s2) / 900.,

(322 - s2) / 900.])

Using these points and weights should yield the approximations

Z
⇡

�⇡

sin(x)dx ⇡ 0 and

Z
⇡

�⇡

cos(x)dx ⇡ 0.000196.

Calculating Weights and Points

Calculating an integral when the weights and points are given is straightforward.
But how are these weights and points found? There are many publications that will
give tables of points for various weight functions. We will demonstrate how to find
such a list using the Golub-Welsch algorithm.

The Golub-Welsch Algorithm

The Golub-Welsch algorithm builds a tri-diagonal matrix and finds its eigenvalues.
These eigenvalues are the points at which a function is evaluated for Guassian
quadrature. The weights are the length of the shifted interval of integration times
the first coordinate of each eigenvector squared. We note that finding eigenvalues
for a tridiagonal matrix is a well conditioned, relatively painless problem. Using
a good eigenvalue solver gives the Golub-Welsch algorithm a complexity of O(n2).
A full treatment of the Golub-Welsch algorithm may be found at http://gubner.
ece.wisc.edu/gaussquad.pdf.

We mentioned that the choice of weight function corresponds to a class of or-
thogonal polynomials. An important fact about orthogonal polynomials is that any
set of orthogonal polynomials {u

i

}N
i=1 satisfies a three term recurrence relation

u
i

(x) = (�
i�1x� ↵

i

)u
i�1(x)� �

i

u
i�2(x)

where u�1(x) = 0 and u0(x) = 1. The coe�cients {�
i

,↵
i

,�
i

} have been calculated
for several classes of orthogonal polynomials, and may be determined for an arbi-
trary class using the procedure found in “Calculation of Gauss Quadrature Rules”
by Golub and Welsch. Using these coe�cients we may create a tri-diagonal matrix

http://gubner.ece.wisc.edu/gaussquad.pdf
http://gubner.ece.wisc.edu/gaussquad.pdf

122 Lab 12. Gaussian Quadrature

J =

2

66666666664

a1 b1 0 0 ... 0
b1 a2 b2 0 ... 0
0 b2 a3 b3 ... 0
...

...
...

...
0 ... b

N�1

0 ... b
N�1 a

N

3

77777777775

Where a
i

= ��i

↵i
and b

i

= (�i+1

↵i↵i+1
)

1
2 . This matrix is called the Jacobi matrix.

Problem 3. Write a function that will accept three arrays representing the
coe�cients {�

i

,↵
i

,�
i

} from the recurrence relation above and return the
Jacobi matrix.

The eigenvalues of the Jacobi matrix are the sample points x
i

. The length of the
shifted interval of integration (in this case 2) times the squares of the first entries
of the corresponding eigenvectors give the weights.

Problem 4. The coe�cients of the Legendre polynomials (which correspond
to the weight function W (x) = 1 on [�1, 1]) are given by

�
k

=
k � 1

k
↵
k

=
2k � 1

k
�
k

= 0

Write a function that accepts an integer n representing the number of
points to use in the quadrature. Calculate ↵, �, and � as above, form the
Jacobi matrix, then use it to find the points x

i

and weights w
i

that correspond
to this weight function. Verify that when n = 5 the points and weights match
the ones given in the first part of this lab.

Problem 5. Write a new function that accepts a function f , bounds a and
b, and n for the number of points to use. Use the previously defined functions
to estimate

R
b

a

f(x)dx using the coe�cients of the Legendre polynomials.

This completes our implementation of the Gaussian Quadrature for a
particular set orthogonal polynomials.

123

Numerical Integration with SciPy

There are many other techniques for finding the weights and points for a given
weighting function. SciPy’s integrate module provides general-purpose integration
tools. For example, scipy.integrate.quadrature() o↵ers a reasonably fast Gaussian
quadrature implementation.

Problem 6. The standard normal distribution is an important object of
study in probability and statistic. It is defined by the probability density
function p(x) = 1p

2⇡
e�x

2
/2 (here we are assuming a mean of 0 and a variance

of 1). This is a function that cannot be integrated symbolically.

The probability that a normally distributed random variable X will take
on a value less than (or equal to) a given value x is

P(X x) =
Z

x

�1

1p
2!

e�t

2
/2dt

This function is essentially zero for values of x that lie reasonably far from
the mean, so we can estimate this probability by integrating from �5 to x
instead of from �1 to x.

Write a function that uses scipy.integrate.quad() to estimate the proba-
bility that this normally distributed random variable will take a value less
than a given number x that lies relatively close to the mean. You can test
your result at x = 1 by comparing it with the following code:

from scipy.stats import norm

N = norm() # Make a standard normal random variable.

N.cdf(1) # Integrate the pdf from -infinity to 1.

