
Lab 10

Filtering and Convolution

Lab Objective: The Fourier transform reveals things about an audio signal that

are not immediately apparent from the soundwave. In this lab we learn to filter

noise out of a signal using the discrete Fourier transform, and explore the e↵ect of

convolution on sound files.

Cleaning up a Noisy Signal

Digital audio signals can be used to produce actual sound waves. When you play
a digital audio signal on your computer, the signal is sent to a speaker, which
vibrates, producing sound waves. When more than one speaker is used, they can
both produce the same signal, or each could produce a di↵erent signal. When there
is only one signal, we say that the sound is monoaural, or simply mono. When
speakers produce di↵erent signals, we say that the overall signal is stereophonic,
or stereo. Usually stereo means two, but there may be any number of signals (5.1
surround sound, for instance, has 5).

Listen to Noisysignal1.wav. This is a mono recording of a (probably familiar)
voice with some annoying noise over it. The plot of the soundwave isn’t very
descriptive; in fact, it looks like static. See Figure 10.1a.

However, if we take the Fourier transform of the signal, we see that the static in
Figure 10.1a is the result of some concentrated high-frequency noise. (In this case,
artificially added). See Figure 10.1b.

The noise can be removed by setting the coe�cients of the high frequencies to
zero. Since the discrete Fourier transform is symmetric, if we set coe↵ecient j to 0,
then we must set coe�cient N�j to 0 as well, where N is the number of coe�cients.
Then we calculate the inverse Fourier transform to get a new, clean signal.

>>> rate,data = wavfile.read('Noisysignal1.wav')

Calculate the Fourier transform

>>> fsig = sp.fft(data, axis = 0)

Coefficients 10000 to 20000 were chosen by inspecting the

plot of the Fourier transform.

103

104 Lab 10. Filtering and Convolution

(a) The plot of Noisysignal1.wav. (b) Spectrum of Noisysignal1.wav

Figure 10.1

>>> for j in xrange(10000, 20000):

... # Set the chosen coefficients to 0

... fsig[j] = 0

... fsig[-j] = 0

Calculate the inverse Fourier transform, cast it as real,

and scale it to be compatible with the wavfile format.

>>> newsig = sp.ifft(fsig)

>>> newsig = sp.real(newsig)

>>> newsig = sp.int16(newsig / sp.absolute(newsig).max() * 32767)

Now we can save the resulting cleaned-up signal newsig to a .wav file. The plot
of the wave now reveals individual syllables as they are spoken. See Figure 10.2.

Figure 10.2: The plot of Noisysignal1.wav after being cleaned.

105

Problem 1. Listen to Noisysignal2.wav. You will probably just hear
noise. Inspect the discrete Fourier transform to see where there is noise.
Remove the noise using the technique described above in order to make the
cleaned-up signal audible. What does the voice say? Who is the speaker? (If
you don’t know the answer to this last question, try a quick Google search.)

The DFT is commonly used in sound filtering, though identifying the particular
frequencies to zero out can be di�cult.

Filtering and Convolution

The DFT is useful for more than filtering noise out of a signal. Suppose we have
a recording of a musical piece played in a small, carpeted room with essentially no
acoustics (little or no echo), and suppose we would like to apply an e↵ect to make
it sound as if the piece were played in a large concert hall or some other room. The
DFT makes this possible when used together with the idea of convolution.

When a balloon is popped in large, echoic room, although the sound of the
actual pop only lasts a few milliseconds, the sound echoes about the room for up
to several seconds. This echoing sound is referred to as the impulse response of the
room, and is a way of approximating the acoustics of a room.

First, we need a recording of how the room responds to a short pulse of sound.
E↵ective ways of producing a loud sound approximating a pulse–other than creat-
ing an actual pulse with a computer–include firing a (preferably blank) gunshot,
popping a balloon, or, if neither of those options are available, clapping the hands
one time.

Recall that we model sound with discrete samples of a soundwave in rapid suc-
cession. When these sounds are played back, the ear percieves them as a continuous
soundwave. In other words, sound playback is a series of pulses of varying intensi-
ties, similar to the pulse in an impulse response. If we “mix” the individual sounds
of an instrument in a carpeted room with the impulse response from a concert
hall, then the new soundwave will sound as if the instrument is being played in the
concert hall.

This “mixing” is better referred to as convolution. With the impulse response, we
can see how sound echoes and decays. This “echoicness” can then be combined with
each audio sample to reproduce the echo at the appropriate time and amplitude.
Since audio needs to be sampled frequently (44100 samples per second is standard)
to create smooth playback, a recording of a song can contain tens of millions of
samples (one minutes at 44100 samples per second gives 2646000 samples). Each
of these samples needs to be combined with the impulse response, which may be
several seconds long. This may be starting to seem computationally infeasible or
at least very di�cult, but surprisingly, it is not. The key is to recognize that this
process can be described as a convolution: namely, the final sound is simply the
convolution of the our original sound with the impulse response. In other words,
it is the original sound with the echoes of the prexious n samples, where n is the
number of samples in the impulse response. We can calculate convolutions quickly

106 Lab 10. Filtering and Convolution

using the convolution theorem:

F(f ⇤ g) = F(f) · F(g)

where F is the Fourier Transform, ⇤ is convolution, and · is component-wise
multiplication. Thus we calculate the convolution of two arrays by simply taking
the Fourier transform of each, multiplying them pointwise, and then taking the
inverse Fourier transform.

Problem 2. (Optional)a Find a large room or area with good acoustics,
and record (an approximation to) its impulse response using a balloon pop.
To record the sound, you will want to use at least a decent microphone. You
may want to record it using the program Audacityb and a laptop. If you
use a unidirectional microphone, be sure the microphone is pointing at the
balloon when you pop it, so that the direct sound from the pop is picked up.
(If you don’t, the result will still be okay. However, after the convolution
it will probably sound somewhat distant, as if we were standing somewhere
where we couldn’t hear the music directly.) If you’ve chosen a good room,
the response should be audible for at least a full second.

Include a plot of both the waveform and spectrum of the impulse response
you recorded.

aIf the instructor does not require this problem then students may use the provided
balloon.wav file which contains the sound of a balloon pop in a large room.

bAudacity is free sound manipulation software and may be downloaded at
http://audacity.sourceforge.net

Problem 3. Download and listen to the file chopin.wav . You will hear a
piano being played in a dead room with little or no acoustics. Using the
Convolution Theorem, take the convolution of this signal with the impulse
response recorded in the previous problem. The convolution given in the
theorem is circular , meaning that sounds at the end of the signal will tend
to mix with sounds at the beginning of the signal. To avoid this e↵ect, add
several seconds of silence (as long as the impulse response echo) to the end
of chopin.wav by appending zeroes to the end of the signal. Also, keep in
mind that the Convolution Theorem requires both signals to have the same
length; therefore you will need to pad the smaller of your two transformed
signals (namely, the transformed impulse response signal) with zeros in order
to make it the same size as the other transformed signal. These zeros should
be added to the middles of the transformed signal, as we need to maintain
its symmetric structure. Describe the resulting sound.

To summarize:

1. Read in chopin.wav and the impulse response with wavfile ,

107

2. Add several seconds of silence to the signal fromchopin.wav ,

3. Insert zeros into the middle of the impulse response transform so that
it is the same length aschopin.wav ,

4. Calculate the convolution of the signals,

5. And Þnally, calculate the inverse Fourier transform.

In some instances, a circular convolution is actually desirable. For instance, an
interesting e!ect is achieved by taking the circular convolution of a long segment
of white noise with some other (shorter) sound. We can create white noise using
SciPyÕsrandom module:

Create 10 seconds of mono white noise .
samplerate = 22050
noise = sp.int16(sp.random.randint(-32767, 32767, samplerate * 10))

Problem 4. Create white noise and listen to the resulting sound (CAUTION:
Turn your volume way down! It may be very, very loud). This kind of noise
is called ÒwhiteÓ because it contains all frequencies with the same strength,
or rather, with the same expected strength (since the amplitude of a speciÞc
frequency is a matter of chance). In order to see this, plot the spectrum of
the noise.

Now we can take the circular convolution of this noise with some other sound.
For instance, letÕs usetada.wav . The result is in tada-conv.wav . We notice that
the original short sound has been sustained to an indeÞnite length. The result is
not a set of static tones, but rather a rich sound which preserves not only the tones,
but the texture, of the original sound; you can hear di!erent tones ßuctuating
randomly in amplitude over time. If you were to play this tada-conv.wav on
repeat, you would Þnd that, because we used a circular convolution, the sound
loops seamlessly from the end back to the beginning; however, most sound players
are not capable of doing this properly, so you will probably hear a break in the
sound. To demonstrate the ÒseamlessnessÓ, we can paste together multiple copies
of the sound consecutively:

rate, sig = wavfile.read(' tada - conv. wav')
sig = sp.append(sig, sig)
sig = sp.append(sig, sig)

Listen to the resulting sound, and notice that we are not able to identify where
the sound loops back to the beginning, because there is no break or click.

